Comparison of validated high-performance liquid chromatography methods using two derivatizing agents for gamma-aminobutyric acid quantification

Kritchapol Panrod, Anyarporn Tansirikongkol, Vipaporn Panapisal
Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand

ABSTRACT
Objective: The purpose of this study was to validate and compare two HPLC analyses of GABA after derivatization with 2-hydroxynaphthaldehyde (HN) or with o-phthalaldehyde (OPA) and 3-mercaptopropionic acid (MPA) in terms of reproducibility, sensitivity and stability of two derivatives.

Materials and Methods: GABA was derivatized with either 2-hydroxynaphthaldehyde (HN) or with o-phthalaldehyde (OPA) and 3-mercaptopropionic acid (MPA) and was analyzed and validated using two different HPLC methods.

Results: Reliability resulted in satisfaction for the HPLC methods in each derivatizing agent. Linear correlation was obtained in the concentration ranges of 40-600 μg/ml and 0.2-0.9 μg/ml for GABA-HN and GABA-OPA/MPA, respectively. The low limit of detection (LOD) and the limit of quantification (LOQ) of GABA-HN were 1 μg/ml and 5 μg/ml while LOD and LOQ of GABA-OPA/MPA were 0.004 μg/ml and 0.02 μg/ml. Validation results of two methods with chosen derivatizing agents showed that the methods were reproducible and precise on quantification of GABA. The method with GABA-OPA/MPA derivatization revealed higher sensitivity compared to one with GABA-HN derivatization. However, GABA-OPA/MPA derivative was less stable.

Conclusion: Both validated methods could be used for sensitive and accurate analysis of GABA.

INTRODUCTION

Gamma-aminobutyric acid (GABA) is a nonprotein amino acid and a neurotransmission agent which can inhibit overstimulation of the brain and reduce hypertension from stress [1-3]. GABA is generally found in human such as in the cortex, hippocampus, hypothalamus, and central nervous system [4], in animals [5] and in plants [6-8]. In terms of physiological functions, GABA has been used to relieve insomnia and anxiety [9,10]. Moreover, GABA can decrease proliferation of cancer cells [11] and increase upregulation of cholesterol in bloodstream [12]. In addition, GABA can reduce glucose levels in diabetic rats [13,14] and decrease blood pressure in Wistar-Kyoto rats [1]. In terms of skin benefits, GABA stimulates dermal fibroblast, especially hyaluronic acid (HA) production, in mouse skin and human dermal fibroblasts [15] and promotes upregulated synthesis human beta-defensin-2 and filaggrin [16]. Furthermore, GABA can inhibit some expressions of pro-inflammatory mediators and speed up the healing process of wound [17]. In addition, these advantages of GABA are known to relate with its concentration. Thereby, quantification of GABA has become an essential part to facilitate the uses of GABA.

Keywords:
2-hydroxynaphthaldehyde, 3-mercaptopropionic acid, gamma-aminobutyric acid, o-phthalaldehyde

Corresponding Author: Vipaporn Panapisal, Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Bangkok - 10330, Thailand.
Tel.: +662-218-8397.
Fax: +662-218-8401.
E-mail: Vipaporn.P@chula.ac.th

Received: Aug 02, 2016
Accepted: Dec 06, 2016
Published: Dec 31, 2016
Several techniques have been used to determine amount of GABA, for example, liquid chromatography tandem mass spectrometry (LC/MS) [18,19], electrochemical detection [20], capillary electrophoresis-MS (CE-MS) [21], and high-performance LC (HPLC). HPLC is considered as a standard analytical method because of simplicity, sensitivity, reproducibility, and economics. However, small amino acid, like GABA, is shortly eluted together with solvent front when using the standard method in HPLC. In addition, GABA does not have fluorophore or strong ultraviolet (UV) absorbance characteristic [22]. Thus, derivatization using derivatizing agents may be required to prolong GABA retention time and to provide strong UV or fluorescent absorbance in the analysis of GABA.

In general, derivatizing agents have their own efficiency and affinity which differently interact with amino acids such as 2-hydroxynaphthaldehyde (HN) [23,24] and o-phthalaldehyde (OPA) binding primary amine [25,26], 4-dimethylaminoazobenzene-4'-sulphonyl chloride binding primary and secondary amines [27], and 2-naphthyl chloroformate binding tertiary amine [28]. In addition, derivatization complexity and derivative stability could be affected by using different derivatizing agents. For this reason, several analytical methods have been developed to improve a complete derivatization between amino acid and derivatizing agent with reproducibility and to provide a considerably stable derivative which is feasible to be used for GABA analysis. For an example, the derivative of GABA-OPA was unstable in an acidic medium (half-life \(\approx 8\) min) [29]. Using thiol co-reagent was reported to improve the stability of OPA derivative [30]. Thiol reagents such as 3-mercaptoproethanol, ethanethiol (ET), and 3-mercapto propionic acid (MPA) have been used with OPA. However, OPA with MPA produced more stable derivative than OPA with ME or ET derivative [31] and provided good fluorescent absorbency [32]. Therefore, different derivatizing agents showed differences in reaction sensitivity and some derivatives were quickly degraded which may cause some difficulty in analysis.

In this work, two derivatizing agents; HN and OPA with MPA, were used in GABA analysis by HPLC and comparatively validated as per International Conference on Harmonization guideline (Q2 R1) [33] with respect to specificity, linearity, accuracy, precision, low limit of detection (LOD), and limit of quantitation (LOQ). The derivatizations between GABA and the studied derivatizing agents (i.e., HN and OPA with MPA) are presented in Figure 1. Furthermore, stabilities of two derivatives were also studied to provide more information for derivatizing agent selection.

MATERIALS AND METHODS

Chemicals and Instruments

GABA, boric acid, OPA, and MPA were purchased from Merck (Darmstadt, Germany). HPLC grade of methanol and tetrahydrofuran (THF) were obtained from Honey Well (NJ, USA). Sodium acetate and potassium chloride were purchased from Carlo Erba (Milano, Italy). HN was obtained from Sigma-Aldrich (MO, USA). Sodium tetraborate was purchased from Ajax Finechem (NSW, Australian). Deionized water and ultrapure water were used in this study.

The HPLC system consisted of a Shimadzu chromatograph (LC-20AD, Tokyo, Japan) equipped with an autosampler, a degasser (DGU-20A3), a binary pump (LC-20AD), a photodiode array detection (DAD) model SPD-M20A, a fluorescence detector (FD) model RX-10AXL, and a security guard column (KJO-4282, Phenomenex, CA, USA).

![Figure 1: Derivatizations between gamma-aminobutyric acid and 2-hydroxynaphthaldehyde and o-phthalaldehyde/3-mercaptopropionic acid](image)
GABA Derivatization

GABA-HN derivatization

Derivatization of GABA with HN was performed based on a protocol modified from Khuhawar and Rajper [34]. GABA solutions were prepared in methanol:water (1:1) and 0.3% (w/v) HN was prepared in methanol. 1 ml GABA solution was mixed with 0.6 ml borate buffer pH 8 and 1 ml of derivatizing reagent. The mixture was heated in a water bath at 80°C for 10 min. Then, it was allowed to cool down and protected from light. The final volume was adjusted to 5 ml with methanol before HPLC analysis.

GABA-OPA/MPA derivatization

Derivatization of GABA with OPA/MPA was performed based on a protocol modified from de Freitas Silva et al. [35]. GABA solutions were prepared in ultrapure water and OPA was freshly prepared in methanol. 500 μl of GABA solution was derivatized by 100 μl of 25 mg/ml OPA, 375 μl borate buffer (pH 9.9), and 25 μl MPA. The resulting solution was vortexed. Next, it was stored in the dark at room temperature for 1 min before analysis.

Chromatographic System and Condition

GABA-HN derivative

The system was equipped with a 5 μm Hypersil® BDS C₁₈ analytical column (4.6 mm × 250 mm id, Thermo Fisher Scientific Inc., USA). The mobile phase was consisted of methanol and water (66:34, v/v). The mobile phase was filtered through 0.45 μm membrane filters and vacuum degassed before use. The 10 μl of derivatized sample was injected and isocratically eluted at a flow rate of 0.8 ml/min. The UV detector was set at detection wavelength of 330 nm.

GABA-OPA/MPA derivative

The system was equipped with a 3.5 μm Zorbax 300SB C₁₈ analytical column (4.6 mm × 150 mm id, Agilent Technology Inc., USA). The mobile phase was consisted of 0.05 M sodium acetate, tetrahydrofuran and methanol (50:1:49, v/v) and adjusted to pH 4.0. The mobile phase was filtered through 0.45 μm membrane filters and vacuum degassed before use. Chromatographic analysis was performed at 25 ± 2°C. The 10 μl of derivatized sample was injected and isocratically eluted at a flow rate of 1 ml/min. The fluorescent detector was set at an excitation wavelength of 337 nm and an emission wavelength of 454 nm.

HPLC Method Validation

The specificity of two methods was tested by comparing the HPLC chromatograms of derivatized GABA and other compounds. Five or six GABA concentrations were prepared for the construction of calibration curve plotting between the peak area and concentration. Each concentration of the GABA solutions was injected in triplicate. The low LOD and the limit of quantitation (LOQ) of GABA under the stated experimental conditions were defined at signal-to-noise (S/N) ratios of 3 and 10, respectively. The intraday precision was determined by analyzing three concentrations of the standard solution on the same day and the interday precision was determined by analyzing on three consecutive days. Relative standard deviation (RSD) was used to evaluate the precision of the method. Accuracy was performed at three different concentrations covering the range of the method. The percent of recovered analyze was used to measure the accuracy of the method. In precision and accuracy tests, each concentration was done in triplicate.

Stability of Derivative

GABA derivatives (GABA-HN and GABA-OPA/MPA) were analyzed at different time intervals after derivatization to study the stabilities of two studied derivatives.

RESULTS AND DISCUSSION

In comparison, the preparation of GABA-HN derivative required energy and time to form, whereas the preparation of GABA-OPA/MPA derivative did not require energy and the derivative was formed in a minute. Both derivatives were successfully prepared.
HPLC Method Validation

Specificity

The aim of the specificity study is to ensure that there is no interference from other components in the sample. The HPLC chromatograms of buffer, standard GABA solution, derivatizing agent and GABA before and after derivatization with HN or OPA/MPA are presented in Figures 2 and 3, respectively. All chromatograms are presented under the same attenuation and scale. Derivatives’ peaks were clearly separated from their derivatizing agent and there was no interference.

Linearity

The comparative regression analyses of the linearity of HN and OPA/MPA derivatizations are presented in Table 1. Linear correlation was obtained between peak areas and concentrations of GABA-HN and GABA-OPA/MPA derivatives in the range of 40-600 μg/ml ($r^2 > 0.999$) and 0.2-0.9 μg/ml ($r^2 > 0.998$), respectively. These results indicated that both methods could be used to quantify GABA with different concentration ranges.

LOD and LOQ

The LOD is the lowest concentration of the sample that can be detected, but not necessarily quantitated, under the stated experimental conditions. The LOQ is the lowest concentration in a sample that might be measured with an acceptable level of accuracy and precision. The LOD and LOQ for GABA-HN derivative were found to be 1 μg/ml and 5 μg/ml, respectively. Whereas, the LOD and LOQ for GABA-OPA/MPA derivative were much lower (i.e., 0.004 μg/ml and 0.02 μg/ml, respectively) as presented in Table 1. More sensitive method could be attained with OPA/MPA derivatization when compared with HN regarding to significantly lower concentration detected.

Precision

Three concentrations of 0.05, 0.1 and 0.5 mg/ml for GABA-HN and 0.3, 0.6 and 0.8 μg/ml for GABA-OPA/MPA were chosen for both precision and accuracy studies. The results of precision study are presented in Table 2. Both RSD values for precision were acceptable (<6% RSD) which could reveal that both methods were reproducible.

Accuracy

The recoveries from the accuracy study were close to 100% and are presented in Table 2. These results informed that HPLC analyses using these two derivatizing agents were accurate on quantitation of GABA.

Stability of derivative

Remaining GABA concentrations after derivatization were monitored over time intervals. Derivatized GABA concentration versus time after derivatization plots of both derivatizing agents are shown in Figure 4. The results revealed that about 99% of GABA+HN derivative remained over 4 h after derivatization, whereas GABA+OPA/MPA derivative was fallen below 80% (slope = −0.3039) in less than an hour. In comparison, more stable derivatives could be obtained with HN derivatizing agent. On the other hand, analysis of GABA using HN would be less time constrained.

CONCLUSION

Two derivatizing agents; HN and OPA/MPA, were used to quantify GABA by HPLC. Following ICH guideline of method validation, these derivatizing agents possessed significant specificity, linearity, precision, accuracy, high sensitivity, and good specificity for analysis of GABA. With OPA/MPA, much lower
Figure 4: Stability profiles of gamma-aminobutyric acid (GABA)-2-hydroxynaphthaldehyde and GABA-o-phthalaldehyde/3-mercaptopropionic acid derivatives after derivatization

Table 2: Intra- and inter-day precision and accuracy of GABA-HN and GABA-OPA/MPA derivatives

<table>
<thead>
<tr>
<th>Validation parameter</th>
<th>GABA-HN derivative</th>
<th>GABA-OPA/MPA derivative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision (RSD, %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intraday</td>
<td>1.01-2.10</td>
<td>0.68-2.74</td>
</tr>
<tr>
<td>Interday</td>
<td>1.35-4.93</td>
<td>3.37-5.45</td>
</tr>
<tr>
<td>Accuracy, %</td>
<td>92.04-104.41</td>
<td>90.58-104.74</td>
</tr>
</tbody>
</table>

GABA: Gamma-aminobutyric acid, HN: 2-hydroxynaphthaldehyde, OPA: O-phthalaldehyde, MPA: 3-mercaptopropionic acid, RSD: Relative standard deviation

 LOD and LOQ values were obtained when compared to HN or it can be considered as a more sensitive method. The preparation of OPA/MPA was simple and no energy required but the half-life of GABA+OPA/MPA derivative was shorter than GABA+HN derivative. Therefore, time limitation may be needed to take into account when using OPA/MPA as derivatizing agent. However, both validated methods could be chosen for variety purpose in analysis of GABA.

ACKNOWLEDGMENTS

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

REFERENCES

Panrod, et al.: Comparative HPLC analyses of GABA derivatives

