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ABSTRACT
This study investigated the quantitative structure–activity relationships (QSAR) 
for a range of substituted quinolinecarbaldehyde derivatives as anti-tubercular 
agent by multiple linear regression analysis. The derived QSAR models have 
been statistically validated internally by means of the Leave One Out (LOO) 
and Leave Many Out (LMO) cross-validation, and Y-scrambling techniques, 
as well as externally by means of an external prediction set. The statistical 
parameters endowed by the three developed MLR models were r2 = 0.982, 
0.979 and 0.995, q2LOO = 0.976, 0.968 and 0.992, pred_r2 = 0.992, 0.981 and 
0.997, and r2m average = 0.904, 0.970 and 0.992, respectively. Overall, these 
results suggest that the reported QSAR models are simple, reliable and robust 
tool for prediction and virtual screening of quinolinecarbaldehyde derivatives 
with good anti-tubercular activity. In addition, the calculated molar refractivity, 
calculated log P, hydrogen bond donor, polarizability and percentage of 
halogen atom in the molecules were found to possess high significant on the 
activity. Furthermore, the domain analysis was also carried out to evaluate the 
prediction reliability of the developed models. The developed models were 
found to be statistically robust and had good predictive power which can be 
successfully utilized for screening of new molecules. 
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Introduction

Tuberculosis is the most commonly encountered 
mycobacterial disease and is considered as one of the 
most dangerous chronic communicable disease by WHO 
and is responsible for at least 2 million deaths globally 
per year. It has been estimated that nearly 8 million 
people develop active TB every year and approximately 
5,500 deaths per day (www.who.int/mediacentre/ 
factsheets/fs104/en//). Due to demographic factors, 
socioeconomic trends, neglected tuberculosis control in 

many countries and HIV infection, this could be sited as 
reason for its present [1]. The major challenge for many 
anti-mycobacterial agents is the ability of Mycobacterium 
tuberculli strains to develop resistance. Effective new 
anti-TB drugs with new mechanism of action have not 
been identified in last forty years. In spite of its severe 
toxicity on repeated dosing, isoniazid is still considered 
as the first line of drug in treatment of tuberculosis. 

Tuberculosis has been treated with combination therapy 
for over fifty years. Multiple drugs are used to treat 
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TB (except in latent TB or chemoprophylaxis), and 
regimens that use only single drugs had resulted in rapid 
development of resistance that lead to treatment failure 
[2]. The rationale for using multiple drugs to treat TB is 
based on simple probability. In addition to the apparent 
risks factors (i.e., known exposure to a patient with MDR-
TB) to MDR-TB, it also includes male sex, HIV infection, 
previous incarceration, failed TB treatment, failure to 
respond to standard TB treatment, and relapse following 
standard TB treatments are also considered as risk 
factors. People with HIV and latent TB infection need 
treatment as soon as possible to prevent from developing 
TB disease. People with HIV, and latent TB infection, are 
much more likely to progress to TB disease than people 
without HIV. Unfortunately, some people with HIV may 
not know that they are infected with TB. Similarly, one 
in five people with TB disease are unaware of their HIV 
status, although HIV status reporting for people with TB is 
improving. CDC recommends screening of HIV in those 
who have TB disease/ suspected of having TB disease, 
or in a contact of a TB patient [3].

Recent advances such as availability of TB genome 
sequence like, a gene probe for rpoB, katG [4] and mabA-
inhA [5] have provided a wide range of novel targets for 
drug design [6], however no new specific effective drug 
has reached the market in past forty years [7]. This urges 
to discover new structural classes of anti-tuberculosis 
agents which may replace or supplement the currently 
avalable drugs. 

The contribution of computational chemistry in rational 
drug design is an important factor to note. Quantitative 
structure activity relationship (QSAR) results in a 
prediction of quantitative relation between chemical 
structure and biological activity. Based on the literatures, 
it is learnt that several attempts have been made to build 

QSAR models for the design and development of anti-
tubercular agents [8-19]. As a part of our investigation, 
for further optimizing quinolone’s anti-bacterial activity 
against Mycobacterium tuberculosis, the QSAR studies 
were performed on quinolinecarbaldehyde derivatives to 
correlate their anti-tubercular activity with their various 
physico-chemical properties.
 
Materials and methods

Chem. Office 2004 (Cambridge Soft Corp., Cambridge, 
USA, http://www.cambridgesoft.com), Molecular 
Modeling Pro 6.1.0 (Trial version, ChemSW, Inc., www.
chemsw.com) and Dragon 6 (TALETE srl, Milano,Italy) 
was used for molecular modeling studies and the QSAR 
models were executed with QSARINS 2.2 (www.qsar.it) 
software [20].

Biological data

In the present QSAR study, we have used biological and 
chemical data of twenty four quinolinecarbaldehydes 
reported by Nayyar et al. (2006) (Table 1) [21]. High 
structural diversity and a sufficient range of the biological 
activity in the selected series of quinolinecarbaldehyde 
derivatives were observed. Anti-tubercular activities used 
in the present study were expressed as -logMIC, where 
MIC is the micro molar concentration of the compounds 
producing minimum inhibition against Mycobacterium 
tuberculosis and stated as the means of at least two 
experiments. The total set of compounds was divided 
randomly into two sets as training and prediction set. 
Training set of compounds was used to develop QSAR 
models and prediction set compounds was used to 
externally validate the developed models. 

Table 1. Structures of quinolinecarbaldehydes
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Compound No. R R1

2 --

 F

3 --

 F

4 -- CHO

5 -- COCH3

6 --

 

7 --

 F

8 --

 F

9 --

 F

10 -- CHO

11 -- COCH3

12 --

 

13 Adamantan-1-yl

 

F

14 Adamantan-1-yl

 

F

15 Adamantan-1-yl

 

F

16 Adamantan-1-yl CHO

17 Adamantan-1-yl COCH3
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Compound No. R R1

18 Adamantan-1-yl

 

F

19 c-C6H11

 

20 c-C6H11

 

21 c-C6H11

 

F

22 c-C6H11 CHO

23 c-C6H11 COCH3

24 c-C6H11

 

Sketching of Molecules

The 2D structures of the compounds were drawn in the 
CS Chem. Office 2004 software using the drawing tools 
in it. The structures were then checked for errors and 
cleaned up, and saved as .mol files for computing various 
physico-chemical descriptors (Table 2). Some physico-

chemical descriptors were calculated by using Molecular 
Modeling Pro 6.1.0. The 2D structures were converted 
into 3D structures and the geometry of the structures was 
optimized by AM1 and then followed by PM3 methods. 
The energy optimized 3D structures were utilized to 
calculate descriptors by Dragon 6 software.

Table 2. Physico-chemical parameters used in the present study

Physico-chemical parameters

Molecular Weight (MW) Moriguchi octanol-water partition coeff (logP)

Sum of atomic van der waals volumes (Sv) Balaban distane connectivity index (J)

Sum of atomic polarizabilities (Sp) Polarity number (Pol)

Mean atomic van der waals volume (Mv) Global topological charge indix (JGT)

Mean atomic sanders on electonegativity (Me) Modified Randic connectivity index (XMOD)

Mean atomic polarizability (Mp) Dipole Length(μ)

Mean electropological state (Ms) Highest occupied molecular orbital (HOMO)

Number of atoms (nAT) Lowest unoccupied molecular orbital (LUMO)

Number of non-H atoms (nSK) Percentage of halogen (X%)

Number of bonds (nBT) Percentage of oxygen (O%)

Number of non-H bonds (nBO) Percentage of nitrogen (N%)

Harmonic oscillator model of aromaticity index total 3D-Balaban index (J3D)

(HOMT) 3D-Harary index (H3D)

3D-Wiener index (W3D) Hydrophilic factor (Hy)

Ghose-grippen molar refractivity (AMR)
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QSAR model- development and validation

In order to avoid co-linearity problems, descriptors were 
selected based on permutation and correlation matrices 
among it. Stepwise multiple linear regression analysis 
was used to achieve the best model.

The developed QSAR models are evaluated using 
the following statistical measures: n, (the number of 
compounds in regression); r2, (the squared correlation 
coefficient); F test, (Fischer’s value) for statistical 
significance; q2, (cross-validated correlation coefficient); 
pred_r2, (r2 for external prediction set); RMSE (root 
mean square error); best_ran_q2, (highest q+ value in 
the randomization test); best_ran_r2, (highest r2 value 
in the randomization test). The regression coefficient r2 
is the relative measure of fit by regression equation. It 
represents the part of variation in the observed data that 
is explained by the regression. However, a QSAR model 
is considered to be predictive, if the following conditions 
are satisfied: r2 > 0.6, q2 > 0.5 and pred_r2 > 0.6. The 
F-test reflects the ratio of variance explained by the 
model and variance due to the error in regression. High 
values of F-test indicate that the model is statistically 
significant. The low standard error of r2 (r2_se), q2 (q2_se) 
and pred_r2 (pred_r2se) value shows absolute quality of 
fitness of the model.

Internal validation was carried out using ‘leave-one-out’ 
(q2LOO) method [22]. The cross-validated coefficient, q2, 
was calculated using the following equation

where yi, and ŷi are the actual and predicted activity of 
the ith molecule in the training set, respectively and ymean 
is the average activity of all molecules in the training 
set. However, a high q2 value does not necessarily give 
a suitable representation of the real predictive power of 
the model for anti-tubercular activity. Hence, an external 
validation was carried out. The external predictive power 
of the model was assessed by predicting –logMIC value 
of the test set molecules, which were not included in the 
QSAR model development. The predictive ability of the 
selected model was also confirmed byr2-r20/r2, r2-r'20/r2, 
k and k'.

where yi, and ŷi are the actual and predicted activity of the 
ith molecule in the test set, respectively, and ymean is the 
average activity of all molecules in the data set.

The external predictability of the selected model was also 
checked by r2

m, which was proposed by Roy and Roy 
(2007) [23] and it was calculated by the following formula:

where r2 is the squared correlation coefficient between 
observed and predicted values and r02 is the squared 
correlation coefficient between observed and predicted 
values with intercept value set to zero. r2m (overall) is the 
r2m value calculated for both LOO and test set together. 
A value of r2m is greater than 0.5 may be taken as an 
indicator for good external predictability.

Another term to check the external predictability of the 
selected model is CCC which was proposed by Chirico 
and Gramatica (2011) [24] and was calculated by the 
following formula:

Results and discussion

The best two models among several models obtained 
from the stepwise multiple linear regression analysis 
using the descriptors (Table 2) obtained from Chem. 
Office and Molecular Modeling Pro is given as below: 

-logMIC = 4.247 (± 0.016) + 0.045 (± 0.001) CMR                                                    
Eq. (1)

n = 15; r2 = 0.982; r2adj = 0.980; RMSEtr = 0.014; MAEtr = 
0.012; CCCtr = 0.991; LOF = 0.000; F1,13 = 699.56; q2LOO 
= 0.976; RMSEcv = 0.016; MAEcv = 0.014; CCCcv = 0.988; 
best rand r2 = 0.072; best rand q2 = -0.240

-logMIC = 4.151 (± 0.046) + 0.053 (± 0.002) Clog P + 
0.082 (± 0.011) HD              Eq. (2)

n = 15; r2 = 0.979; r2adj = 0.975; RMSEtr = 0.014; MAEtr 
= 0.010; CCCtr = 0.989; LOF = 0.000; F2,12 = 272.59; 
q2LOO = 0.968; RMSEcv = 0.018; MAEcv = 0.013; CCCcv 
= 0.984; best rand r2 = 0.143; best rand q2 = -0.342

Eq. (1) could explain 98.2% of the variance of the anti-
tubercular activity data. The parameters involved in the 
selected model (CMR) and the calculated anti-tubercular 
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activity by Eq. (1) are given in Table 3 and 4, respectively. 
The closeness between the actual and residual activity of 
the compounds in training and prediction set for Eq. (1) is 
shown in Figure 1. The selected model has shown good 

Table 3. Selected physico-chemical parameters

Compd. 
No CMR Clog P HD Sp X%

1 8.020 3.986 3 22.762 3.10

2 8.020 3.986 3 22.762 3.10

3 8.020 3.986 3 22.762 3.10

4 5.993 0.453 4 16.756 0

5 6.457 1.238 4 18.517 0

6 8.005 3.737 3 22.824 0

7 8.020 4.406 3 22.762 3.10

8 8.020 4.406 3 22.762 3.10

9 8.020 4.406 3 22.762 3.10

10 5.993 0.453 4 16.756 0

11 6.457 1.658 4 18.517 0

12 8.005 4.157 3 22.824 0

13 12.424 7.793 3 38.091 1.80

14 12.424 7.793 3 38.091 1.80

15 12.424 7.793 3 38.091 1.80

16 10.400 4.260 4 32.086 0

17 10.400 5.045 4 33.847 0

18 12.408 7.544 3 38.154 0

19 10.625 6.606 3 32.569 2.10

20 10.625 6.606 3 32.569 2.10

21 10.625 6.606 3 32.569 2.10

22 8.598 3.073 4 26.563 0

23 9.062 3.858 4 28.324 0

24 10.610 6.357 3 32.631 0

Table 4. Experimetal, calculated and predicted 
anti-tubercular activity of quinolone carbaldehydes

Comp. 
No

Experimental 
activity

(µM)

Eq. (1) Eq. (2) Eq. (3)

Calculated
activity

Predicted
activity

Calculated
activity

Predicted
activity

Calculated
activity

Predicted
activity

1b,c 4.628 4.609 - 4.607 - 4.626 4.625

2 4.628 4.609 4.607 4.607 4.603 4.626 4.625

3d 4.628 4.609 4.607 4.607 4.603 4.626 -

4 4.503 4.518 4.5218 4.503 4.503 4.514 4.518

5b,c 4.533 4.539 - 4.544 - 4.537 4.539

6 4.597 4.608 4.609 4.594 4.593 4.594 4.594

7a - - - - - -

8d 4.628 4.609 4.607 4.629 4.629 4.626 -

9b,c 4.628 4.628 4.609 - 4.629 4.626 4.625

10d 4.503 4.518 4.521 4.503 4.503 4.514 -

11 4.533 4.533 4.539 4.540 4.574 4.537 4.539

12 4.597 4.597 4.608 4.609 4.619 4.594 4.594

13 4.806 4.806 4.808 4.808 4.808 4.815 4.819

14d 4.806 4.806 4.808 4.808 4.808 4.815 -

15a - - - - - -

16 4.727 4.716 4.715 4.703 4.696 4.716 4.715

17 4.745 4.737 4.736 4.745 4.745 4.740 4.739

18 4.786 4.807 4.813 4.794 4.797 4.797 4.801

19a - - - - -

20b,c 4.745 4.727 - 4.745 - 4.745 4.745

21 4.745 4.727 - 4.745 - 4.745 -

22 4.653 4.635 4.634 4.641 4.638 4.643 4.643

23b,c 4.675 4.655 - 4.682 - 4.667 4.666

24 4.722 4.726 4.726 4.732 4.733 4.724 4.724

a - outliers, b - prediction set compounds for Eq. (1), c - 
prediction set compounds for Eq. (2), d - prediction set 
compounds for Eq. (3)Figure. 1 Plot between experimental and residual anti-

tubercular activities of  quinolinecarbaldehyde derivatives 
by Eq. (1)                
    Prediction set,     Training set

internal prediction (q2LOO = 0.976). The robustness 
of this model was checked by Y–randomization test 
(maximum r2 value is 0.072 and maximum q2is -0.240). 
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The best model among several models obtained from 
the stepwise multiple linear regression analysis using the 
descriptors obtained from Dragon 6 is given as below: 

-logMIC = 4.293 (± 0.076) + 0.013 (± 0.000) Sp + 0.011 
(± 001) X%                    Eq. (3)

n = 15; r2 = 0.995; r2adj = 0.994; RMSEtr = 0.006; MAEtr 
= 0.005; CCCtr = 0.997; LOF = 0.000; F2,12 = 1231.24; 
q2LOO = 0.992; RMSEcv = 0.008; MAEcv = 0.006; CCCcv = 
0.996; best rand r2 = 0.133; best rand q2 = -0.323

Eq. (3) explains 99.5% of the variance of the anti-tubercular 
activity data. The parameters involved in the selected 
model (Sp and X%) and the calculated anti-tubercular 
activity by Eq. (3) are given in Table 3 and 4, respectively. 
The closeness between the actual and residual activity of 
the compounds in training and prediction set for Eq. (3) is 
shown in Figure 3. The selected model has shown good 
internal prediction (q2LOO = 0.992). The robustness 
of this model was checked by Y–randomization test 
(maximum r2 value is 0.133 and maximum q2is -0.323). 

The low randomized r2 and q2 values indicate that the 

Eq. (2) could explain 97.9% of the variance of the anti-
tubercular activity data. The parameters involved in the 
selected model [Clog P and hydrogen bond donor (HD)] 
and the calculated anti-tubercular activity by Eq. (2) 
are given in Table 3 and 4, respectively. The closeness 
between the actual and residual activity of the compounds 
in training and prediction set for Eq. (2) is shown in Figure 
2. The selected model showed good internal prediction 
(q2LOO = 0.968). The robustness of this model was 
checked by Y–randomization test (maximum r2 value is 
0.143 and maximum q2 is -0.342). The low randomized r2 
and q2 values indicate that the good results in our original 
model are not due to a chance correlation or structural 
dependency of the training set.

Figure 2. Williams plot for Eq. (1): plot of standardized 
residuals (Y-axis) versus leverages (hat values; X-axis) 
for each compound
     Prediction set,      Training  set

good results in our original model are not due to a chance 
correlation or structural dependency of the training set. 
The significance and predictive ability of the proposed 
QSAR model [Eq. (1), (2) and (3)] was confirmed as it 
satisfies the conditions mentioned in Table 5.

Table 5. Statistical significance and validation 
parameters

Statistical 
parameters Conditions

Models

Eq. (1) Eq. (2) Eq. (3)

r2 > 0.6 0.982 0.976 0.995

CCCTR > 0.85 0.991 0.989 0.997

q2LOO > 0.5 0.976 0.968 0.992

CCCcv > 0.85 0.989 0.984 0.996

q2LMO > 0.5 0.974 0.964 0.991

pred_r2 > 0.6 0.992 0.981 0.997

CCCex > 0.85 0.972 0.990 0.998

q2-F1 > 0.6 0.948 0.981 0.996

q2-F2 > 0.6 0.948 0.981 0.996

q2-F3 > 0.6 0.972 0.990 0.995

r2m > 0.5 0.912 0.980 0.994

r’2m > 0.5 0.896 0.961 0.991

∆r2m < 0.2 0.014 0.019 0.003

r2m average > 0.5 0.904 0.970 0.992

k’ 0.85 < k’ < 1.15 0.997 1.000 1.000

k 0.85 < k’ < 1.15 1.003 1.000 0.999

r2-r20/r2 < 0.1 0.009 0.000 0.000

r2-r’20/ r2 < 0.1 0.006 0.000 0.000

r2p > 0.5 0.937 0.000 0.000

r2m(overall) > 0.5 0.943 0.971 0.943

r’2m(overall) > 0.5 0.926 0.951 0.926

r2m average (overall) > 0.5 0.934 0.961 0.934

∆r2m (overall) < 0.2 0.017 0.020 0.017

Figure 3. Plot between experimental and residual anti-
tubercular activities of quinolinecarbaldehyde derivatives 
by Eq. (2)
     Prediction set,      Training  set



Finally, the applicability domain was established for all the 
developed models by determining the leverage values for 
each compound. Figure 4, 5 and 6 shows the Williams 
plot; i.e. plot of standardized residuals (y-axis) versus 
leverages (x-axis) for each compound of the training 
and prediction set of all the three models. From these 
plot, the applicability domain was established inside a 
squared area within ± 2.00 standard deviations for Eq. (1) 
and Eq. (3), ± 2.50 standard deviations for Eq. (2),  and 
a leverage threshold h* = 0.400, 0.600 and 0.563 (h* = 
3p´/n, being p´ the number of model parameters + 1, and 
n the number of compounds) for all the three models. All 
compounds of training set and prediction set were inside 
of the square area as seen in Figure 4, 5 and 6.

Figure 4. Williams plot for Eq. (2): plot of standardized 
residuals (Y-axis) versus leverages (hat values; X-axis) 
for each compound
     Prediction set,      Training  set

Figure 5. WPlot between experimental and residual anti-
tubercular activities of quinolinecarbaldehyde derivatives 
by Eq. (3)
     Prediction set,      Training  set     

Figure 6. Williams plot for Eq. (3): plot of standardized 
residuals (Y-axis) versus leverages (hat values; X-axis) 
for each compound
     Prediction set,      Training  set

For future investigations, the predicted anti-tubercular 
activity data must be considered reliable only for those 
molecules that fall within the applicability domain on 
which the model was constructed [25].

Moreover, it is not possible to use the reported QSAR 
models to predict the activity of any type of molecules 
vs. anti-tubercular activity. The applicability domain 
of the derived QSAR models is applicable only to the 
substituted quinolinecarbaldehyde derivatives. However, 
it is very important to point out an eventual QSAR models 
disappointments:  like activity cliffs [26]. It is possible 
because similar molecules can show significantly different 
biological activity. Activities are often mispredicted for 
these molecules, even when the overall prediction of the 
models is high.

In Eq. (1) the positive coefficient of CMR suggests that the 
activity increases with increase in size of the molecules, 
thus the bulky molecules may perfectly fit into the active 
site. This finding was supported by compounds 13-24. In 
Eq. (2) the positive coefficient of Clog P indicates that the 
hydrophobicity of the compounds is positively persuading 
to the anti-tubercular activity, thus the strong hydrophobic 
groups may responsible to bind with active site. This 
finding was supported by compounds 13-15 and 18 
which are having adamantan-1-yl substitution on second 
position of quinolone and fluorinated aromatic ring 
substitution on –NH-R1 position. The positive coefficient 
of HD indicates that the hydrogen bond donor groups in 
the compounds are positively affect the anti-tubercular 
activity, thus the hydrogen bond donor groups may 
responsible to bind with active site. This phenomenon 
was found to be supported by compounds 16, 17, 22 
and 23 which are having additional hydrogen bond donor 
groups on –NH-R1 position.
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Conclusion

In this study we had developed three QSAR models for 
a set of twenty four quinolone carbaldehyde derivatives 
having Mycobacterium tuberculosis inhibitory activity. 
The LOO cross-validation methods and Y-randomization 
technique indicated that the models were significant, 
robust and has good internal predictability. These findings 
could be utilized in development and optimization of new 
anti-tubercular agents. The reported QSAR models might 
be used for predicting the anti-tubercular activity of quin-
olinecarbaldehyde derivatives only. It can be concluded 
thar 3D QSAR and docking studies should be carried out 
to understand the mechanisms of chemical–biological 
interactions of quinolinecarbaldehydes against Mycobac-
terium tuberculosis.
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