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ABSTRACT

Introduction: A QSAR analysis was performed on a series of 2-arylpyrimidine and s-triazine 
derivatives as selective PDE4B inhibitors. Primary objective of the study was to develop predictive 
QSAR models for s-triazines and 2-arylpyrimidines as selective PDE4B inhibitors and to identify 
structural features which are responsible for the PDE4B selectivity. Materials and Methods: A 
data set comprising 62 compounds as PDE4B inhibitors was used for development of first QSAR 
model while data set of 57 compounds as PDE4D inhibitors was used to develop another QSAR 
model. Data set was divided into training (80%) and test (20%) set by using K-mean clustering 
method. CDK and chemaxon descriptors were obtained for all compounds. QSAR model was 
built using multiple linear regression (MLR) technique. Squared cross-validation leave one out 
(LOO) coefficient (R2cv) for internal validation was calculated whereas external validation was 
performed by predicting the activity of test set using QSAR model developed. Conclusion: The 
results suggest that ATSm4, Wlambda3.unity, C1SP1, RNCS, TPSA, asa_ASA_P_pH_7.4 and 
maximalprojectionradius are important in determining the PDE4B inhibition, while BCUT-1l, 
WNSA-3, nAtomP, TPSA and C1SP3 are vital structural features in determining the PDE4D 
inhibition. TPSA and C1SP3 are negatively correlated with the PDE4D inhibition.

INTRODUCTION

Asthma and chronic obstructive pulmonary disease 
(COPD) are common inflammatory diseases of lung in 
general population. Prevalence of asthma and COPD has 

increased in recent years, with more than 200 million people 
affected by it worldwide. The drugs mainly used to manage 
inflammation in COPD and asthma are inhaled glucocorticoids 
which are combined with β2-agonists/antimuscarinics to relax 
the airways.[1] β2-agonists act on β2-adrenoceptor, activate 
adenylyl cyclase, and increase cytosolic cyclic adenosine 
monophosphate (cAMP) level.[2] Glucocorticoids bind to 
glucocorticoid receptor (GR) in cytoplasm to form activated 
GR, which reduces nuclear factor-κB-associated coactivator 
activity, thus reducing histone acetylation.[2] However, the 
clinical experience with this particular drug class in COPD 
and steroid-resistant asthma has been disappointing, and it 
has been suggested that the lack of efficacy of these drugs in 
this disease is attributable to a molecular defect in histone 
deacetylase activity.[3] Glucocorticoids are ineffective in 

smokers due to oxidation stress, resulting in increased PI3Kδ 
activation.[4] Recent study found that theophylline, which is a 
non-selective phosphodiesterase 4 (PDE4) inhibitor, managed 
to restore histone deacetylase activity and inhibit PI3Kδ.[3,4] 
Hence, PDE4 inhibitor has been selected to treat COPD and 
steroid-resistant asthma.

PDE4, a main selective cAMP-metabolizing enzyme in 
inflammatory and immune cells, includes four subtypes such 
as PDE4A, PDE4B, PDE4C, and PDE4D. Many PDE4 inhibitors 
in development are efficacious in animal models of various 
inflammatory disorders such as asthma, COPD, psoriasis, 
inflammatory bowel diseases, and rheumatoid arthritis[5] 
as well as in clinical trials for asthma and COPD.[6] The 
treatments for respiratory disorders with PDE4 inhibitors are 
not definitive due to narrow therapeutic window of most of 
the compounds.[7] A major reason for their poor clinical results 
is the consequence of dosing limitation when administered 
orally and lack of sufficient activity when inhaled and the side 
effects such as nausea and emesis, which make it intolerable 
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in some patients.[8] Studies have shown that inhibition of 
PDE4D has been associated with nausea and vomiting.[9] 
A recent study has shown that deletion of PDE4D and not 
PDE4B reduced the duration of anesthesia-induced xylazine 
in mice, where the xylazine was used as a replacement of 
emesis since rodents do not possess an emetic reflex.[10] more 
importantly, recent findings in PDE4 knockout mice suggest 
that an inhibitor with PDE4B selectivity should retain many 
beneficial anti-inflammatory effects without the unwanted 
side effects.[11] Thus, selective PDE4B inhibitors are valid, 
promising therapeutic intervention for different inflammatory 
conditions including those of respiratory tract like asthma.

Several lead compounds with diverse structures have 
been identified as selective PDE4B inhibitors. 1,3,5-triazines 
(s-triazines) and 2-arylpyrimidines are among the most 
promising categories of selective PDE4B inhibitors discovered 
recently. The compounds belonging to these categories have 
demonstrated more than 100-fold selectivity for PDE4B versus 
PDE4D.[11a,12] The optimization of these compounds can further 
improve the selectivity for PDE4B.

In silico studies, i.e., quantitative structure–activity 
relationship (QSAR) and other ligand-based drug design 
techniques have widely been used in the past to optimize 
activity of lead compounds and identify structural requirement 
of receptors.[13] Thus, this study has been designed to use 
QSAR to develop predictive QSAR models for s-triazines 
and 2-arylpyrimidines and identify the structural features of 
s-triazines and 2-arylpyrimidines responsible for their PDE4B 
selectivity.

MATERIALS AND METHODS

Data Sets

A data set comprising 62 compounds as PDE4B inhibitors was 
used for the development of first QSAR model while data set 
of 57 compounds as PDE4D inhibitors was used to develop 
another QSAR model. The compounds included 2-arylpyridine 
derivatives and s-triazine derivatives. The compounds 
and their IC50 values were collected from the literature 
[Table 1].[11a,12] IC50 values were converted to pIC50 (−log IC50) 

for the development of QSAR model.

Data set was divided into training (80%) and test (20%) 
set using K-mean clustering method. For the PDE4B inhibitors, 
data set was split into training set containing 50 molecules 
and test set containing 12 molecules [Table 2]. For PDE4D 
inhibitors, data set was divided into training set containing 46 
molecules and test set containing 11 molecules Table 2.

Calculation of Descriptors

ACD/ChemSketch 2016.1 was used to draw the structures of 
compounds in the training set and the test set.[14] All structures 
were uploaded to Online Chemical Database (https://
ochem.eu/descriptorscalculator/show.do) for calculation of 
descriptors.[14,15] All structures were processed using Chemaxon 
Standardizer.[15,16] Standardization was applied to transform 
all molecules according to a set of SMARTS templates. All 
molecules were neutralized and salts were removed. Clean 
structure was applied to remove 3D or atom coordinate 
calculation information and prevent model overfitting.[16] All 

the structures were converted to 3D and optimized by Corina 
before calculation of descriptors.[15]

A number of CDK descriptors were calculated such as 
constitutional descriptors, geometric descriptors, hybrid 
descriptor, topological descriptors, and electronic descriptors. 
Chemaxon descriptors such as elemental analysis, charge, 
geometry, partitioning, protonation, and isomers for pH 7.4 
were calculated for every molecule. pH 7.4 was used for the 
calculation of Chemaxon descriptors.

QSAR Modeling

QSAR model was built using multiple linear regression (MLR) 
technique. The descriptors were used on the independent 
variables whereas the pIC50 values were used on the dependent 
variables. MATLAB® R2016b software was used to build 
the QSAR equation with best regression equation (highest 
correlation of determination, R2) value using stepwise 
regression.[17] Descriptors were added one by one into the 
equation to determine which final combination of descriptors 
gives the best R2. All descriptors included in the QSAR model 
for PDE4B and PDE4D inhibition were statistically significant 
(P < 0.05). Standard residual, which is the standardized 
difference of predicted and observed activity value of each 
molecule, was determined using StatSoft® STATISTICA (trial 
version) and compound with the highest value of standard 
residual were considered as outlier.[18] Outliers were deleted 
to improve the regression’s correlation of determination. 
Correlation of determination (R2) above or equal to 0.6 suggests 
a good MLR model.[19] Combination of descriptors obtained was 
imported into StatSoft® STATISTICA software for determination 
of R2 (correlation of determination), R2

adj (adjusted correlation 
of determination), F (Fisher statistical significance criteria) 
values, and SE (standard error of estimation). F value indicated 
overall significance of the model.[19]

Cross-Validation

Cross-validation consists of internal and external validation. 
Reliability and applicability of the model are examined using 
cross-validation procedure.

Squared cross-validation leave one out coefficient (R2 cv) 
for internal validation was calculated using MATLAB® R2016b 
software.[17] It involved removal of molecule one by one from 
the data set, develop the model again, and calculate for Q2 

(cross-validated R2). For a good predictivity model, Q2 has to 
be >0.5, and R2-Q2 should not exceed 0.3.[19,20]

External validation was performed by predicting the 
activity of test set using QSAR model developed. The predicted 
activities of the molecules in test set were correlated with 
the observed activities to obtain the R2

pred. Outliers with high 
standard residual values were deleted from test set. If R2 for 
external test set, R2

pred > 0.6, the external predictivity of the 
model was considered as good.[19]

RESULTS AND DISCUSSION

QSAR Model for PDE4B Inhibition

QSAR model was generated for PDE4B inhibition using 
combination of CDK and Chemaxon descriptors. Stepwise 
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Entry R1 R2 R3 R4 R5 X Y PDE4B 
IC50 (nM)

PDE4D 
IC50 (nM)

1 Me –CH2CH=CH2 Ph H –COOH C NH 190 1900

2 Me Me Ph H –COOH C NH 430 3400

3 Me Et Ph H –COOH C NH 140 2100

4 Me n-Pr Ph H –COOH C NH 1300 7600

5 Me –CN Ph H –COOH C NH 120 1500

6 Me –CHO Ph H –COOH C NH 300 1500

7 Me –CH2OH Ph H –COOH C NH 540 8000

8 Et –CH2CH=CH2 Ph H –COOH C NH 34 82

9 n-Pr –CH2CH=CH2 Ph H –COOH C NH 690 2400

10 Me –CH2CH=CH2 H –COOH C NH 120 1300

11 Me –CH2CH=CH2 H –COOH C NH 68 990

12 Me –CH2CH=CH2 H –COOH C NH 2800 12000

13 Me –CH2CH=CH2 H –COOH C NH 3700 15000

14 Me –CH2CH=CH2 H –COOH C NH 860 3000

15 Me –CH2CH=CH2 H –COOH C NH 220 2800

16 Me –CH2CH=CH2 H –COOH C NH 210 1500

17 Me –CH2CH=CH2 H –COOH C NH 220 2000

Table 1: Structures and activity of 2-arylpyridine derivatives as PDE4B and PDE4D inhibitors[11a,12]

(Contd...)
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Table 1: (Continued)

Entry R1 R2 R3 R4 R5 X Y PDE4B 
IC50 (nM)

PDE4D 
IC50 (nM)

18 Me –CH2CH=CH2 H –COOH C NH 150 1300

19 Me –CH2CH=CH2 H –COOH C NH 78 760

20 Me –CH2CH=CH2 Ph H –CH2COOH C NH 1800 >10,000

21 Me –CH2CH=CH2 H –CH2COOH C NH 940 11000

22 Me –CH2CH=CH2 H –CH2COOH C NH 1200 9900

23 Me –CH2CH=CH2 H –CH2COOH C NH 600 4800

24 Me –CH2CH=CH2 H –CH2COOH C NH 320 8800

25 Me –CH2CH=CH2 H –CH2COOH C NH 190 5300

26 Me Et H –CH2COOH C NH 34 1500

27 Me Et H –CH2COOH C NH 19 1600

28 Me Et H –CH2COOH C NH 15 1700

29 Me Et H –CH2COOH C NH 6.8 2900

30 Me Et F –CH2COOH C NH 15 3100

31 –OCH2CH3 - –OCH2CH3 H –OCH3 N NH 6700 2300

32 Me - H –CH2COOH N NH 1287 NA

33 i-Pr - H –CH2COOH N NH 1945 3580

(Contd...)
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Table 1: (Continued)

Entry R1 R2 R3 R4 R5 X Y PDE4B 
IC50 (nM)

PDE4D 
IC50 (nM)

34 Et - H –CH2COOH N NH 383 865

35 n-Pr - H –CH2COOH N NH 2447 NA

36 - H –CH2COOH N NH 251 1489

37 - H –CH2COOH N NH 237 1181

38 - H –CH2COOH N NH 3770 5611

39 Me - H –CH2COOH N NH 18755 22260

40 - H –CH2COOH N NH 1437 2107

41 Et - H –CH2COOH N NH 1460 727

42 Et - H –CH2COOH N NH 2777 NA

43 - H –CH2COOH N NHCH2 2282 859

44 - H –CH2COOH N NHCH2 845 726

45 - H –CH2COOH N O 1862 2268

46 Me - H –COOH N NH 4048 NA

47 Et - H –COOH N NH 261 251

(Contd...)
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Table 1: (Continued)

Entry R1 R2 R3 R4 R5 X Y PDE4B 
IC50 (nM)

PDE4D 
IC50 (nM)

48 Et - H –F N NH 1394 207

49 i-Pr - H –COOH N NH 220 219

50 i-Pr - H –F N NH 8815 886

51 - H –COOH N NH 46 20

52 - H –COOH N NH 135 268

53 - H N NH 135 268

54 Me - H –CH2COOH N NH 781 681

55 Me - H –COOH N NH 241 213

56 Me - H CN N NH 12 13

57 Me - H CH2CN N NH 165 7

58 Me - H N NH 126 132

59 Me - H N NH 69 63

60 Me - H N NH 402 160

61 Me - H N NH 1090 96

(Contd...)
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regression was used to determine optimum number of 
descriptors in modeling of PDE4B QSAR model. The final 
equation was evaluated by its Q2 and R2

pred values for its 
validity and applicability.

The best one-variable model

The best one-variable model contains ATSm4 as correlating 
descriptor. The model is shown below (Equation 1):

pIC50=0.0671 (±0.0159) (ATSm4)+3.3075 (±0.7402)
 (1)

n = 50, R2 = 0.2702, R2
adj = 0.2551, SE = 0.6551, and 

F = 17.7790

The best two-variable model

Second model shows an appreciable improvement in 
the statistic. The best two-variable model is shown below 
(Equation 2):

pIC50= 0.0688 (±0.0159) (ATSm4)−0.1124 (±0.0314) 
(Wlambda3.unity)+3.3075 (±0.7402) (2)

n = 50, R2 = 0.4269, R2
adj = 0.4025, SE = 0.5867, 

F = 17.5040

The best three-variable model

Further addition of C1SP1 into Equation (2) led to the three-
variable model. The model is shown below (Equation 3):

pIC50= 0.0749 (±0.0135) (ATSm4)−0.0971 (±0.0298) 
(Wlambda3.unity)+0.9518 (±0.3357) (C1SP1)+ 
4.1845 (±0.7442) (3)

n = 50, R2 = 0.5121, R2
adj = 0.4803, SE = 0.5472, 

F = 16.0970

The best four-variable model

Fourth model contains four variables, which was formed by 
adding relative negative charge surface area (RNCS) descriptor 
into Equation 3. The model is shown below (Equation 4):

pIC50=0.0719 (±0.0127) (ATSm4)−0.1145 (±0.0288) 
(Wlambda3.unity)+1.2021 (±0.3307) (C1SP1)+0.0791 
(±0.0304) (RNCS)+4.0691 (±0.7029) (4)

n = 50, R2 = 0.5759, R2
adj = 0.5382, SE = 0.5158, 

F = 15.2780

The best five-variable model

Total polar surface area (TPSA) descriptor was added as 
contributing variable to Equation 4 to form new equation with 
better statistical parameters. The best five-variable model is 
shown below (Equation 5):

pIC50=0.0624 (±0.0125) (ATSm4)−0.1180 (±0.0271) 
(Wlambda3.unity)+1.3650 (±0.3168) (C1SP1)+0.1670 
(±0.0439) (RNCS)−0.0057 (±0.0022) (TPSA)+4.82635 
(±0.719974) (5)

n = 50, R2 = 0.6340, R2
adj = 0.5924, SE = 0.4846, 

F = 15.2410

The best six-variable model

Stepwise regression further led to six-variable model with 
slight improvement on statistical parameters. The best six-
variable model is shown below (Equation 6):

pIC50=0.0651 (±0.0121) (ATSm4)−0.1267 (±0.0265) 
(Wlambda3.unity)+1.5710 (±0.3210) (C1SP1)+0.2059 
(±0.0462) (RNCS)−0.0081 (±0.0024) (TPSA)+0.0086 
(±0.0041) (asa_ASA_P_pH_7.4)+3.9905 (±0.8014) (6)

n = 50, R2 = 0.6676, R2
adj = 0.6212, SE = 0.4672, 

F = 14.3920

The best seven-variable model

Addition of maximal projection radius descriptor to 
Equation (6) resulted in new equation with better statistical 
parameter. The seven-variable model is shown below 
(Equation 7):

pIC50=0.0616 (±0.0118) (ATSm4)−0.2787 (±0.0768) 
(Wlambda3.unity)+1.5997 (±0.3093) (C1SP1)+0.2172 
(±0.0448) (RNCS)−0.0084 (±0.0023) (TPSA)+0.0085 
(±0.0040) (asa_ASA_P_pH_7.4)+0.7175 (±0.3422) 
(maximalprojectionradius)+0.4669 (±1.8489) (7)

n = 50, R2 = 0.6994, R2
adj = 0.6489, SE = 0.4497, 

F = 13.9390

Addition of further descriptors did not improve the 
statistical parameters significantly, thus Equation 7 was 
selected as the optimum model. Analysis of residuals led to 
identification of molecule entry 13 as outlier. Thus, entry 13 
was deleted from the training set to improve the regression. 
The best seven-variable model is shown below (Equation 8), 
and the statistical parameters, correlation matrix of descriptors, 
and the actual and predicted activity are shown in Tables 3-5, 
respectively.

pIC50=0.0611 (±0.0114) (ATSm4)−0.2858 (±0.0742) 
(Wlambda3.unity)+1.5312 (±0.3004) (C1SP1)+0.2068 
±0.0436) (RNCS)−0.0079 (±0.0022) (TPSA)+0.0083 
(±0.0038) (asa_ASA_P_pH_7.4)+0.7140 (±0.3303) 
(maximalprojectionradius)+0.4669 (±1.8490) (8)

n = 49, R2 = 0.7166, R2
adj = 0.6683, SE = 0.4341, 

F = 14.8140

Entry R1 R2 R3 R4 R5 X Y PDE4B 
IC50 (nM)

PDE4D 
IC50 (nM)

62 Me - H N NH 1574 600

NA: Not available, PDE4D: Phosphodiesterase 4D, PDE4B: Phosphodiesterase 4B

Table 1: (Continued)
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QSAR Equation 8 has a coefficient of determination of 
0.7166 (higher than 0.6) which indicates a good correlation 
between descriptors and the PDE4B inhibitory activity 
[Figure 1]. Q2 of 0.5589 and R2

pred of 0.7645 shows good 
predictivity and applicability of this model. Contributing 
descriptors of this equation are ATSm4 (Moreau-Broto 
autocorrelation descriptors using atomic weight), Wlambda3.
unity (holistic descriptor introduced by R. Todeschini), C1SP1 
(carbon connectivity in terms of hybridization), RNCS, TPSA, 
asa_ASA_P_pH_7.4 (water accessible surface area of all polar 
atoms at pH7.4), and maximal projection radius.

ATSm4 is the mean of the products of atomic weight of 
atoms separated by topological diameter of three atoms.[21] 

The higher the atomic weight of atoms spaced by topological 
diameter of three atoms, the higher the ATSm4 value. ATSm4 
has a positive correlation with pIC50. Hence, high ATSm4 value 
is favorable for PDE4B inhibitory activity. Entry 29 has one 
methyl group and one bromine atom on the thiophenyl ring 
at position R3 of compound whereas entry 28 has only one 
chlorine atom substituent on thiophenyl ring at R3. Hence, 
entry 28 has lower PDE4B inhibitory activity than entry 29 
because atomic weight of chlorine is lower than bromine 
atom and there are extra methyl groups on the thiophenyl 
substituent in entry 29.

Wlambda3.unity is one of the weighted holistic invariant 
molecular (WHIM) descriptors descriptors introduced by 
R. Todeschini. Wlambda3.unity is related to molecular size 
along a principle axis.[22] WHIM descriptors overcome common 
problems in traditional QSAR approaches, i.e. requirement of a 

Entry PDE4B dataset PDE4D dataset

44 Test Training

45 Training Training

46 Training -

47 Training Training

48 Training Training

49 Training Training

50 Training Training

51 Training Training

52 Test Training

53 Training Training

54 Training Training

55 Test Training

56 Training Training

57 Training Training

58 Training Training

59 Test Training

60 Training Test

61 Training Test

62 Training Training

-: Means the entry is not included in dataset, PDE4D: Phosphodiesterase 
4D, PDE4B: Phosphodiesterase 4B, QSAR: Quantitative structure–activity 
relationship

Table 2: Training and test sets for PDE4B and PDE4D QSAR 
model

Table 2: (Continued)

Entry PDE4B dataset PDE4D dataset

1 Training Training

2 Training Test

3 Training Test

4 Test Training

5 Training Training

6 Training Training

7 Test Test

8 Training Training

9 Training Training

10 Test Training

11 Training Training

12 Training Test

13 Training Training

14 Training Training

15 Training Training

16 Training Test

17 Test Training

18 Training Training

19 Training Training

20 Training -

21 Training Training

22 Training Training

23 Training Training

24 Training Test

25 Training Training

26 Training Test

27 Training Training

28 Training Training

29 Training Training

30 Test Training

31 Test Test

32 Training -

33 Training Training

34 Test Training

35 Training -

36 Training Training

37 Training Training

38 Test Training

39 Training Training

40 Training Training

41 Training Training

42 Training -

43 Training Test

(Contd...)
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common molecular reference, a poor conformational approach, 
and a lack of a global view of the molecules.[23] Negative 
coefficient of Wlambda3.unity shows inverse relationship of 
the descriptor with the inhibitory activity (pIC50).

C1SP1 indicates triply bound carbon atoms which are 
bound to one other carbon atom (C≡C−X or X≡C−C, in which 
X is not carbon atom). Positive coefficient of C1SP1 shows 
that the compound with more C1SP1 carbon atoms has better 
PDE4B inhibitory activity. Entry 5, 56, and 57 have one C1SP1 
carbon atom within their structure and their IC50 value is lower 
than 200 nM. The PDE4B inhibitory activities of these three 
compounds are generally higher than those without C1SP1 
carbon atoms.

The next contributing descriptor is RNCS (relative 
negative charge surface area) of the compound. Formula used 
for calculation of RNCS is shown below (Equations 15 and 16):

Surface area of most negative atomRNCS  
Relative negative charge

=  (15)

Relative negative charge
Maximum atomic negative charge in the molecule 

Negative atomic charge in the molecule

=
 (16)

RNCS has a positive correlation with the inhibitory 
activity of compound. From Equation 15, surface area and 
atomic size of most negative atom are proportional to the 
inhibitory activity of compound. The bigger the most negative 
atom, the more favorable it is for the PDE4B inhibitory 
activity. Relative negative charge is the numerator of the 
Equation 15. It has inverse relation with RNCS. Therefore, 
the smaller the relative negative charge of the compound, the 
larger the RNCS. The most negative atom with low negative 
charge and very large surface area within the compound is 
favorable for PDE4B inhibitory activity. Molecular structure 
of entry 49 and 50 differs only at substituent on R5. The most 
negative atom in entry 50 is fluorine atom, whereas the most 
negative atom in entry 49 is oxygen atom in carboxyl group. 
Replacement of carboxyl group containing larger oxygen 
atom with fluorine atom as in entry 50 results in significant 
decrease in PDE4B inhibitory activity. Hence, it can be 
deduced that large surface area of the most negative atom 
within the compound has a beneficial effect on its PDE4B 
inhibitory activity.

TPSA is the topological polar surface area of the 
molecule. It is the sum of the surface area of polar atoms 
such as oxygen, nitrogen, and their attached hydrogen 
in the molecule.[24] It plays a role in the prediction of the 
intestinal absorption of molecule and blood–brain barrier 
penetration of the molecule.[25] From Equation 8, TPSA 
has inverse relationship with the inhibitory activity. This 
indicates that the small surface area of polar atoms such as 
N and O in the compound is beneficial for PDE4B inhibitory 
activity. However, there are some limitations of the TPSA 
descriptor. The TPSA value does not account for influence 
of positional change of polar fragment.[24] Position of the 

Table 3: Summary of statistical parameters of QSAR models for 
PDE4B inhibition

Model No. R2 R2
adj

SE F

Equation 1 0.2702 0.2551 0.6551 17.7790

Equation 2 0.4269 0.4025 0.5867 17.5040

Equation 3 0.5121 0.4803 0.5472 16.0970

Equation 4 0.5759 0.5382 0.5158 15.2780

Equation 5 0.6340 0.5924 0.4846 15.2410

Equation 6 0.6677 0.6212 0.4672 14.3920

Equation 7 0.6991 0.6489 0.4497 13.9390

Equation 8 0.7166 0.6683 0.4341 14.8140

PDE4B: Phosphodiesterase 4B, QSAR: Quantitative structure–activity 
relationship, SE:Standard error

Table 4: Correlation matrix of descriptors present in the best QSAR model 8

Parameter pIC50 ATSm4 Wlambda3.
unity

C1SP1 RNCS TPSA asa_ASA_P_pH7.4 maximalprojectionradius

pIC50 1.0000

ATSm4 0.5206 1.0000

Wlambda3.unity −0.4233 0.0260 1.0000

C1SP1 0.2684 −0.1631 −0.1931 1.0000

RNCS 0.1019 0.1338 0.2673 −0.3432 1.0000

TPSA −0.1106 −0.1049 0.1656 −0.1019 0.7347 1.0000

asa_ASA_P_pH7.4 −0.1793 −0.2040 0.1414 −0.1687 0.0316 0.3254 1.0000

Maximal 
projection radius

−0.3364 0.0632 0.9452 −0.1887 0.2243 0.1418 0.1410 1.0000

QSAR: Quantitative structure–activity relationship

y = 0.7166x + 1.8202
R² = 0.7166
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Figure 1: Predicted versus observed activity of Model 8
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same polar group on a different position, i.e., ortho, meta, 
or para of benzene ring may contribute to the same TPSA 
value.[24] TPSA value calculated for entry 6 is higher than 
entry 2 due to the presence of polar aldehyde group at R2 
position of entry 6 instead of non-polar methyl group at 
R2 position of entry 3. Due to inverse relationship of TPSA 
and PED4B inhibitory activity, entry 6 has lower pIC50 than 
entry 2. Coefficient of TPSA descriptor is lower than other 
six descriptors in the equation. Hence, it has the lowest 
contribution to the PDE4B inhibitory compared to other 
descriptors in the equation. 

Asa_ASA_P_pH7.4 is water accessible surface area for 
all polar atoms (|qi|≥0.2) at pH7.4. Value of qi indicates the 
point charge of atom located at position i of compound.[21] 
Only atom with charge more than or equal to 0.2 statcoulomb 
is taken into account and surface area of such atoms is 
measured. Positive coefficient of this descriptor indicates that 
increase in magnitude of asa_ASA_P of compound at pH7.4 
will increase its PDE4B inhibitory activity. Generally, the larger 
the size of polar groups, the larger the surface area of polar 
group accessible to water.

The last descriptor is maximal projection radius of the 
compound. It is the radius of maximum projection area of 
conformer. The geometry and energy of all molecules were 
optimized before measurement of the maximal projection 
radius. From Equation 8, maximal projection radius of 
compound is proportional to its PDE4B inhibitory activity 
(pIC50). It has the second highest contribution among all 
descriptors to the PDE4B inhibitory activity.

QSAR Model for PDE4D Inhibition

QSAR model was generated for PDE4D inhibition using 
combination of CDK and Chemaxon descriptors. Five 
descriptors were identified as best correlating descriptors with 
inhibitory activity of compounds.

Entry Observed value Predicted value Residual

47 6.5834 6.5131 0.0702

48 5.8557 5.8423 0.0135

49 6.6576 6.4142 0.2434

50 5.0548 5.7917 −0.7369

51 7.3372 6.9500 0.3873

52 6.8697 6.9500 −0.0804

53 6.8697 6.8045 0.0651

54 6.1073 6.2265 −0.1191

55 6.6180 6.5146 0.1034

56 7.9208 7.4140 0.5069

57 6.7825 6.7715 0.0110

58 6.8996 6.6391 0.2605

60 6.3958 6.4382 −0.0424

61 5.9626 6.7302 −0.7676

62 5.8030 5.8255 −0.0225

Entry 13 was identified as outlier and was deleted from training set whereas 
entry 30 and 59 were identified as outliers and deleted from test set

Table 5: Observed and predicted activities along with the residual 
obtained using QSAR model 8

Table 5: (Continued)

Entry Observed value Predicted value Residual

1 6.7212 6.3988 0.3225

2 6.3665 6.1700 0.1965

3 6.8539 6.9968 −0.1429

4 5.8861 6.4238 −0.5378

5 6.9208 7.4387 −0.5179

6 6.5229 6.3099 0.2130

7 6.2676 6.2799 −0.0123

8 7.4685 6.9004 0.5682

9 6.1612 6.6771 −0.5160

10 6.9208 −7.0764 −0.1556

11 7.1675 7.0778 0.0897

12 5.5528 6.3409 −0.7881

14 6.0655 6.1158 −0.0503

15 6.6576 6.4494 0.2081

16 6.6778 6.4143 0.2634

17 6.6576 −6.5226 0.1350

18 6.8239 7.1126 −0.2887

19 7.1079 6.7998 0.3081

20 5.7447 6.3673 −0.6225

21 6.0269 6.3162 −0.2893

22 5.9208 6.3454 −0.4245

23 6.2218 6.4426 −0.2207

24 6.4949 6.2720 0.2228

25 6.7212 6.2639 0.4573

26 7.4685 7.2299 0.2386

27 7.7212 6.9384 0.7828

28 7.8239 7.1233 0.7006

29 8.1675 8.4517 −0.2842

31 5.1739 5.2389 −0.0650

32 5.8904 5.3169 0.5736

33 5.7111 6.2710 −0.5599

34 6.4168 6.3044 0.1124

35 5.6114 6.0172 −0.4059

36 6.6003 6.2686 0.3317

37 6.6253 6.1933 0.4319

38 5.4237 6.1392 −0.7156

39 4.7269 4.3029 0.4240

40 5.8425 5.8086 0.0340

41 5.8356 5.9448 −0.1092

42 5.5564 5.4783 0.0781

43 5.6417 5.7053 −0.0637

44 6.0731 6.0195 0.0536

45 5.7300 6.1869 −0.4569

46 5.3928 5.9664 −0.5737

(Contd...)
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The best one-variable model

BCUTc-1l showed good correlation with the PDE4D inhibition. 
The model is shown below (Equation 9):

pIC50=17.4150 (±3.2812) BCUTc-1l+11.7258 (±1.0782)
 (9)

n = 46, R2 = 0.3903, R2
adj = 0.3765, SE = 0.6082, 

F = 28.1700

The best two-variable model

WNSA-3 was added into the Equation (9). The new equation 
showed great improvement in R2. The model is shown below 
(Equation 10):

pIC50=18.2385 (±3.0027) BCUTc-1l−0.0326 (±0.0103) 
WNSA-3+10.8984 (±1.0174) (10)

n = 46, R2 = 0.5048, R2
adj = 0.4818, SE = 0.5544, 

F = 21.9180

The best three-variable model

Regression analysis further incorporated nAtomP into Equation 
10 and resulting in a new model with three descriptors. The 
best three-variable model is shown below (Equation 11):

pIC50=18.8576 (±2.7781) BCUTc-1l−0.0443 (±0.0103) 
WNSA-3+0.1121 (±0.0384) nAtomP+8.4597 (±1.2563)
 (11)

n = 46, R2 = 0.5884, R2
adj = 0.5590, SE = 0.5115, 

F = 20.0130

The best four-variable model

The four-variable model is formed by adding TPSA descriptor 
as correlating variable into Equation 11. The best four-variable 
model is shown below (Equation 12):

pIC50=11.9412 (±3.3862) BCUTc-1l−0.0717 (±0.0130) 
WNSA-3+0.1424 (±0.0364) nAtomP−0.0063 (±0.0020) 
TPSA+5.5665 (±1.4819) (12)

n = 46, R2 = 0.6660, R2
adj = 0.6331, SE = 0.4665, 

F = 20.4110

The best five-variable model

Addition of C1SP3 into Equation 12 showed slight improvement 
in R2 of equation. The five-variable model is shown below 
(Equation 13):

pIC50=10.2531 (±3.1709) BCUTc-1l−0.0740 (±0.0120) 
WNSA-3+0.1315 (±0.0337) nAtomP−0.0079 (±0.0020) 
TPSA−0.1949 (±0.0673) C1SP3+6.0952 (±1.3762) (13)

n = 46, R2 = 0.7237, R2
adj = 0.6892, SE = 0.4294, 

F = 20.9510

Addition of further descriptors did not improve the 
statistical parameters significantly, thus Equation 13 was 
selected as the optimum model for PDE4D inhibition. Analysis 
of residuals led to identification of molecule entry 8 as outlier. 
Thus, entry 8 was deleted from the training set to improve the 
regression. The best five-variable model for PDE4D inhibition 
is shown below (Equation 14), and the statistical parameters, 
correlation matrix of descriptors, and the actual and predicted 
activity are shown in Tables 6-8, respectively:

pIC50=10.5864 (±2.8549) BCUTc-1l−0.0775 (±0.0108) 
WNSA-3+0.1259 (±0.0304) nAtomP−0.0078 (±0.0018) 
TPSA−0.1736 (±0.0609) C1SP3+6.0765 (±1.2383) (14)

n = 45, R2 = 0.7720, R2
adj = 0.7428, SE = 0.3864, 

F = 26.4120

The best QSAR model for PDE4D inhibition consists of 
five descriptors with R2 of 0.7720 (Equation 14) [Figure 2]. 
These five descriptors explain 77% of variation in the PDE4D 
inhibitory activity. Q2 and R2

pred of Equation 14 are 0.6798 
and 0.6653, respectively. This suggests good predictive 
power of Equation 14. Five descriptors which contribute to 
the PDE4D inhibitory activity are BCUT-1l (descriptor related 
to intermolecular interaction), WNSA-3 (surface weighted 
charged partial negative charged surface area), nAtomP 
(number of atoms in the largest pi system), TPSA, and C1SP3 
(singly bound carbon bound to another carbon).

The first descriptor that contributed to PDE4D inhibition 
is BCUTc-1l. BCUTc-1l is eigenvalue-based descriptor which 
accounts for partial charge and connectivity of atoms within 
the compound. BCUTc-1l utilized method of matrices, in 

Table 6: Summary of statistical parameters of QSAR models for 
PDE4D inhibition

Model No. R2 R2
adj SE F

Equation 9 0.3903 0.3765 0.6082 28.170

Equation 10 0.5048 0.4818 0.5544 21.918

Equation 11 0.5884 0.5590 0.5115 20.013

Equation 12 0.6660 0.6331 0.4665 20.411

Equation 13 0.7237 0.6892 0.4294 20.951

Equation 14 0.7720 0.7428 0.3864 26.412

QSAR: Quantitative structure–activity relationship, PDE4D: 
Phosphodiesterase 4D

Table 7: Correlation matrix of descriptors present in the best QSAR model 14

Parameter pIC50 BCUTc-1l WNSA-3 nAtomP TPSA C1SP3

pIC50 1.0000

BCUTc-1l 0.6430 1.0000

WNSA-3 −0.3310 0.0917 1.0000

nAtomP 0.0874 −0.0349 0.3661

TPSA −0.2937 −0.5871 −0.5811 −0.0229

C1SP3 −0.2056 0.0302 0.1300 −0.1201 −0.2764 1.0000

QSAR: Quantitative structure–activity relationship
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which the diagonal matrix elements are based on computed 
physicochemical parameters related to a partial charge of the 
compound.[26] BCUTc-1l has the highest contribution among 
all descriptors in PDE4D inhibition. Positive coefficient of 
BCUTc-1l shows that increase in magnitude of BCUTc-1l of 
compound will increase its PDE4D inhibitory activity.

WNSA-3 is surface-weighted charged partial negative 
charged surface area that combines surface area and partial 
charge information. Formula for WNSA-3 is shown below 
(Equations 17 and 18):[21]

3PNSA  ×SASA
WNSA - 3=

1000  (17)

PNSA SA
-

3 a a
a

q  − −= ∑  (18)

PNSA3 is atomic charged weighted positive surface area 
whereas SASA is total molecular solvent-accessible surface 
area. It is sum of the product of atomic solvent-accessible 
surface area by partial charge overall negatively charged 
atoms.[27] WNSA-3 has a negative correlation with PDE4D 
inhibition activity. nAtomP is a number of atoms in largest pi 
system of the molecule. Aromatic ring is the largest pi system 
in 2-arylpyridine and s-triazine system. The positive coefficient 
indicates that the higher the number of atoms involved in the 
aromatic pi system, the better the PDE4D inhibitory activity. 
nAtomP of entry 51 is 22, which is higher than entry 44 with 
nAtomP of 13 accordingly; thus, PDE4D inhibitory activity of 
entry 51 is higher than entry 13.

TPSA is the fourth descriptor in terms of its contribution 
to the PDE4D inhibitory activity. Similar to PDE4B model, 
TPSA of the compounds contributes negatively to its PDE4D 
inhibitory activity. Both TPSA and WNSA-3 are descriptors 
related to surface area and charge. The correlation coefficient 
of TPSA and WNSA-3 is −0.581118. Incorporation of TPSA 
into equation increases R2 by 0.0776, from 0.5884 to 0.6660. 
Hence, it is worthwhile to include both TPSA and WNSA-3 in 
PDE4D inhibition model. The last descriptor is C1SP3; it is 
the number of singly bound carbon atom bound to another 
carbon. Singly bound carbon atom is sp3 hybridisation, 

Table 8: Observed and predicted along with the residual obtained 
using QSAR model 14 Entry Observed value Predicted value Residual

51 7.6990 6.9869 0.7121

52 6.5719 6.9094 −0.3376

53 6.5719 6.6878 −0.1159

54 6.1669 6.2195 −0.0526

55 6.6716 6.8013 −0.1297

56 7.8861 7.4287 0.4573

57 8.1549 7.1547 1.0002

58 6.8794 7.2807 −0.4013

59 7.2007 6.8936 0.3071

60 6.7959 8.2388 −1.4429

62 6.2218 6.1444 0.0775

Entry 8 was identified as outlier and was deleted from training set whereas 
entry 61 was identified as outlier and deleted from test set

Table 8: (Continued)

Entry Observed value Predicted value Residual

1 5.7212 5.4378 0.2834

2 5.4685 5.1170 0.3516

3 5.6778 5.4493 0.2285

4 5.1192 5.6055 −0.4864

5 5.8239 6.1295 −0.3056

6 5.8239 6.1590 −0.3351

7 5.0969 4.5851 0.5118

8 5.6198 5.6553 −0.0355

9 5.8861 5.6648 0.2213

10 6.0044 5.6693 0.3351

11 4.9208 5.3568 −0.4360

12 4.8239 5.3027 −0.4787

13 5.5229 5.0245 0.4984

14 5.5528 5.5823 −0.0294

15 5.8239 5.3259 0.4980

16 5.6990 5.5490 0.1500

17 5.8861 5.8353 0.0508

18 6.1192 5.6067 0.5125

19 4.9586 5.2244 −0.2657

21 5.0044 5.3255 −0.3211

22 5.3188 5.3650 −0.0463

23 5.3188 5.1604 0.1583

24 5.2757 5.1130 0.1627

25 5.7959 5.4753 0.3205

26 5.8239 5.9394 −0.1155

27 5.7696 6.2801 −0.5106

28 5.5376 5.4282 0.1094

29 5.5086 5.1708 0.3378

30 5.6383 4.3790 1.2593

33 5.4461 6.0458 −0.5997

34 6.4377 6.4699 −0.0322

36 5.8271 5.7985 0.0286

37 5.9278 5.9274 0.0003

38 5.2510 5.9197 −0.6687

39 4.6525 4.4041 0.2484

40 5.6763 5.3918 0.2845

41 6.1385 5.8930 0.2454

43 6.0660 6.0487 0.0173

44 6.1391 6.0796 0.0595

45 5.6444 6.0667 −0.4224

47 6.6003 6.7496 −0.1493

48 6.6840 6.6371 0.0470

49 6.6596 6.3669 0.2927

50 6.0526 6.6354 −0.5828

(Contd...)
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bond to another atom and two non-carbon atoms such as 
hydrogen or oxygen. Equation 14 shows that increasing 
number of C1SP3 atoms will decrease the inhibitory activity 
of compound.

According to the model 8 and 14, TPSA has positive 
correlation with PDE4B and PDE4D inhibitory activities of 
compound. Hence, TPSA has insignificant role in determining 
selectivity of the compound toward PDE4B inhibition. The 
number of C1SP1 atoms within compound is positively 
correlated with the PDE4B inhibitory activity of compound 
whereas a number of C1SP3 atoms is negatively correlated 
with PDE4D inhibition. A new compound is designed based 
on model 8 and 14 [Figure 3] which contained favorable 
descriptors for inhibition of PDE4B.

In the new compound, introduction of methyl group on 
the thiophenyl ring at position R3 of compound will increase 
C1SP3 and ATSm4. Since ATSm4 is positively correlated with 
inhibition of PDE4B and C1SP3 is inversely correlated with 

PDE4D inhibition, selectivity of compound toward PDE4B will 
be increased.

Introduction of methoxy group on thiophenyl substituent 
will increase electronegativity of the compound due to the 
presence of extra oxygen atom. Relative negative charge 
within the compound will decrease and RNCS of the 
compound will increase. Since RNCS is positively correlated 
with inhibition of PDE4B; thus, substitution is favorable for 
inhibition of PDE4B.

Cross-validation

The Equations 8 and 14 were subjected to internal validation 
and external validation. In external validation for PDE4B 
inhibition model, two outliers (entry 30 and 59) with high 
standard residual values were deleted from test set [Table 9]. 
In external validation for PDE4D inhibition model, one outlier 
(entry 61) was deleted from test set.

Internal validation

Internal validation of model 8 and model 14 was performed 
using LOO method. The LOO method consists of developing 
a number of models omitting one compound at the time after 
developing each model.[28] Model 8 has Q2 value of 0.5589 and 
R2-Q2 value of 0.1577. Q2 higher than 0.5 and R2-Q2 smaller 
than 0.3 suggests that model 8 has good predictive ability. 
However, Q2 value higher or equal than 0.9 is required for an 
excellent model.[28] The best QSAR model for PDE4B inhibition 
(Equation 8) has F value of 14.814 which indicates the overall 
significance of the model. Standard error of Equation 8 is 
0.3864. High F value and small standard error explains small 
variance due to error and shows the excellent reliability of the 
model.

Q2 and R2-Q2 of model 14 are 0.6798 and 0.0922, 
respectively. F value and standard error of model 14 are 26.412 
and 0.3864, respectively. It has a higher F and lower standard 
error when compared to model 8. Therefore, model 14 has 
greater predictive power compared to model 8. PRESS value 
for model 14 is lower than model 8. The lower the PRESS 
value, the better the fit of the model to the new training set 
obtained by randomly removing one compound.

External validation

Test set is used to validate the external validity of model 8 and 
14. Model 8 is a reliable model because it has R2

pred of 0.7645. 
For model 8, entry 12 has highest residual value, which is 
0.7881. Observed activity of entry 12 is 5.5528, whereas 
predicted activity of entry 12 using Equation 8 is 6.3409. 
Model 14 has R2

pred of 0.6653 which is smaller than R2
pred of 

model 8. Model 14 has less predictive power than model 8. 
However, model 14 is considered as a reliable model because 
R2

pred is higher than 0.6.

Table 9: Cross-validation parameter for model

Model No. Ntest PRESS Q2 RMSECV Q2
pred F SE

8 10 12.0250 0.5589 0.4954 0.7645 14.814 0.4341

14 10 8.1770 0.6798 0.4263 0.6653 26.412 0.3864

SE: Standard error

y = 0.772x + 1.3677
R² = 0.772
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Figure 2: Predicted versus observed activity of model 14

Figure 3: New compound (PCS-I) designed based on quantitative 
structure–activity relationship model 8 and 14
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CONCLUSION

In QSAR model for PDE4B inhibition, R2 value of model 
increases when a number of valid descriptors included in 
the model increases. The optimum number of descriptors 
in QSAR model for PDE4B inhibition is seven. R2 of the best 
seven-variable model for PDE4B inhibition is 0.7166. The 
results indicate that ATSm4, Wlambda3.unity, C1SP1, RNCS, 
TPSA, asa_ASA_P_pH_7.4, and maximal projection radius 
are important in determining the PDE4B inhibition of the 
compound. ATSm4, C1SP1, RNCS, asa_ASA_P_pH_7.4, and 
maximal projection radius have a positive correlation with 
PDE4B inhibitory activity whereas Wlambda3.unity and TPSA 
are negatively correlated with PDE4B inhibitory activity. Among 
seven descriptors, C1SP1 has the highest contribution to the 
PDE4B inhibition whereas TPSA has a lowest contribution to 
the PDE4B inhibition.

In QSAR model for PDE4D inhibition, the optimum 
number of descriptors is five. BCUT-1l, WNSA-3, nAtomP, 
TPSA, and C1SP3 are vital structural features in determining 
the PDE4D inhibition of the compound. BCUTc-1l and nAtomP 
have positive correlation with the PDE4D inhibition, while 
WNSA-3, TPSA, and C1SP3 are negatively correlated with 
the PDE4D inhibition. Contribution of BCUTc-1l to PDE4D 
inhibition is highest whereas contribution of TPSA to PDE4D 
is lowest.

Model 8 for PDE4B inhibition has R2
pred of 0.7645, whereas 

model 14 for PDE4D has R2
pred of 0.6653. Both models 8 and 

14 have acceptable external validity because R2
pred is higher 

than 0.6.

The information obtained from these models was used to 
design a new compound PCS-I with higher PDE4B selectivity. 
PDE4B selectivity of new compound is introduced by increasing 
ATSm4, decreasing C1SP3, and decreasing RNCS.
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