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In silico discovery of potential 
diagnostic biomarkers of lung cancer
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Teknologi MARA Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, 
Malaysia

ABSTRACT

Introduction: Understanding hub genes implicated in lung cancer (LC) metastasis will help in 
finding effective ways to diagnose and cure cancer. Accurate identification of protein biomarkers 
helps in improving the prognosis of LC. Here, the focus of this study was to discern the biomarkers 
that are implicated in LC. Materials and Methods: Three datasets were extracted from 
gene expression omnibus (GEO) database. GEO2R tool was used to identify the differentially 
expressed genes (DEGs) between LC and normal lung samples. FunRich software, Enrichr, and 
Kyoto Encyclopedia of Genes and Genomes database were used to identify the common DEGs 
in LC, continued by identifying functions and pathways. Next, protein-protein interactions 
were obtained from search tool for the retrieval of interacting genes database. The hub genes 
were identified using CytoHubba tool. Then, the prognostic value in the identified genes was 
verified using LC database in Kaplan-Meier Plotter platform. Results and Discussion: A total 
of 215 downregulated and 84 upregulated were overlapped. A total of ten hub genes such as 
interleukin-6, matrix metallopeptidase 9, secreted phosphoprotein 1, enhancer of zeste homolog 
2, collagen type 1 alpha 1, platelet endothelial cell adhesion molecule 1 (PECAM1), CDK1, VWF, 
EDN1, and CD34 were selected. Three significant DEGs were identified to be associated with 
favorable overall survival in LC patients which were PECAM1, EDN1, and von Willebrand factor 
(VWF). Conclusion: Therefore, this study suggests that all the hub genes may be potential 
biomarkers and treatment target for LC.

Keywords: Bioinformatics, biomarker, hub genes, lung cancer

INTRODUCTION

Lung cancer (LC) is one of the main causes of cancer-related 
mortality worldwide.[1] It is divided into two types which are 
primary LC and secondary LC.[2] This disease also classified 

into small cell LC (SCLC) and non-SCLC (NSCLC).[3] About 80% 
of LC cases are due to NSCLC includes large cell carcinoma, 
squamous cell carcinoma, and adenocarcinoma. In Malaysia, 
LC is the third most common cancer and the mortality remains 
high because of late diagnosed. However, most of the patient is 
diagnosed with NSCLC at Stages II–IV; thus, the patient does not 
have a chance to do the surgery. Patients with chronic LC usually 
die 1–5 years from diagnosed and the cure rate is <15%.[4] To 
this date, the prognosis of NSCLC is still poor even though many 
researches have been done to increase the understanding about 
LC pathogenesis and the molecular characteristics of NSCLC. 
The survival rate of the patient has not been improved.[5] Thus, 
LC novel predictive biomarkers are needed to improve the 
treatment and increase the accuracy of prognosis.[6]

Over the years, gene expression omnibus (GEO) database 
archived and distributed high-throughput gene expressions 
and functions of genomic data sets. Geo has evolved and now 
extensively used to examine chromatin structure, methylation 
of genome, genome-protein interaction, and discover 
potential biomarkers for cancer diagnosis.[7] Furthermore, 
to overcome inconsistent results from the study, integrated 
bioinformatics approaches have been widely utilized in 
cancer research and a few of bioinformatics reports have 
been published.[8]

In this study, we used three gene expression profiles from 
the GEO database to identify differentially expressed genes 
(DEGs) between human LC and normal lung tissue samples. 
Then, Kyoto Encyclopedia of Genes and Genomes (KEGG) and 
Gene Ontology (GO) were applied to analyze the functions 
of all the DEGs. We also used a search tool for the retrieval of 
interacting genes (STRING) and Cytoscape to construct protein-
protein interaction (PPI) network and identify the top hub genes 
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associated with LC. Finally, Kaplan-Meier (KM) plotter was used 
to validate the overall survival analyses of the hub genes.

MATERIALS AND METHODS

Identification of Genes Implicated in LC

GEO Database was used to retrieve a few series of datasets 
about human lung adenocarcinoma.[9] The database showed 
a total of 8698 series about adenocarcinoma. The series had 
been reviewed and three datasets of gene expression related 
to lung adenocarcinoma were downloaded (GSE 31210, GSE 
43458, and GSE 10072). The platform of GSE 31210 was 
based on GPL570 platform ([HG-U133_Plus_2] Affymetrix 
Human Genome U133 Plus 2.0 Array). Then, GSE 43458 was 
based on platform GPL6244 ([HuGene-1_0-st] Affymetrix 
Human Gene 1.0 ST Array [transcript (gene) version]) and 
lastly, GSE 10072 was based on platform GPL96 ([HG-U133A] 
Affymetrix Human Genome U133A Array).

Selecting the DEGs in LC Patients

GEO2R tool was used to analyze all the genes in the datasets 
by calculating the corrected P value and |logFC|.[7] DEGs 
were genes that met the cutoff criteria, corrected P < 0.05 
and |logFC| ≥1.0. Then, FunRich software was applied to 
construct Venn diagram to identify the intersection part for all 
three datasets.[10]

KEGG Pathway and GO Analysis of DEGs

Enrichr online tool was used to learn more about all the 
function of the DEGs and their pathways.[11] The gene function 
can be comprised three terms which are biological process 
(BP), cellular component (CC), and molecular function (MF). 
Next, KEGG is a collection of databases dealing with biological, 
genomes, diseases, pathways, drugs, and chemical substances 
that were used to identify the pathways for DEGs.[12]

PPI Network Screening and Identification 
of Hub Gene

The STRING database is a biological database which predicts 
the PPI.[13] In this study, STRING database and Cytoscape 
software were used to construct PPI network between the 
DEGs.[14] In Cytoscape, the plugin tool CytoHubba was used 
to calculate each protein node degree. The hub genes were 
the gene with 10 or more gene degrees in the PPI network.[15]

Hub Genes Survival Analysis

The KM plotter is an online tool which capable to assess 
the effect of 54K genes on survival in 21 types of cancer.[16] 
This includes 6234 breast cancer, 1440 gastric cancer, 2190 
ovarian cancer, and 3452 LC. Thus, the KM plotter of LC was 

used to identify the prognostic value of the hub genes in lung 
adenocarcinoma patients.

RESULTS

Identification of Genes Implicated in LC

In this study, three gene datasets (GSE31210, GSE43458, 
and GSE10072) were selected and downloaded from the 
GEO database. From the datasets, GSE31210 contained 226 
LC samples and 20 normal samples, GSE43458 contained 80 
LC samples (40 samples of non-smoker and 40 samples of 
smoker) and 30 normal samples, and GSE10072 contained 
58 LC samples (15 samples of non-smoker and 43 samples of 
smoker) and 49 normal samples [Table 1]. Based on GEO2R 
analysis, a total of 2331 DEGs were identified from GSE31210, 
including 1313 downregulated genes and 1018 upregulated 
genes. The DEGs met the selection criteria which are P < 0.05 
and |logFC| ≥1.0. Then, in GSE43458 dataset, 810 DEGs 
were screened, including 598 downregulated genes and 212 
upregulated genes. In GSE10072 dataset, 609 DEGs were 
obtained and among them, 409 were downregulated genes 
and 200 upregulated genes. Next, we used Venn analysis in 
FunRich software to find the correlation of DEGs genes. Thus, 
based on the Venn diagram, 299 DEGs were significantly 
expressed among all the dataset [Figure 1]. From 299 DEGs, 
215 DEGs were significantly downregulated genes, while 84 
DEGs were significantly upregulated genes [Table 2].

Functional and KEGG Pathway Analyses of 
the DEGs

Enrichr was used to perform the GO functional and KEGG 
pathway analysis for all of the DEGs. The GO analysis results 
were divided into BP, CC, and the MF. The results show 
that the downregulated DEGs were mainly enriched in BP, 
including the regulation of angiogenesis, extracellular matrix 
assembly, and regulation of vasculogenesis, glomerulus 
vasculature development, and regulation of nitric oxide 
biosynthesis process. The upregulated DEGs were enriched in 
the extracellular matrix organization, regulation of glial cell 
differentiation, centromeric sister chromatid cohesion, mitotic 
spindle checkpoint, and spindle assembly checkpoint.

Next, the CC shows that the downregulated DEGs were 
mainly enriched in an integral component of plasma membrane, 
G-protein coupled receptor dimeric complex, membrane raft, 
lamellar body, and platelet alpha granule membrane. The 
upregulated DEGs in CC show that they mainly expressed in 
condensed nuclear chromosome kinetochore, spindle, spindle 
pole, microtubule cytoskeleton, and endoplasmic reticulum 
lumen.

As for MF, the downregulated DEGs were mainly expressed 
in amyloid-beta binding, metalloendopeptidase inhibitor 

Table 1: The gene expression for gene expression omnibus lung cancer data profile

Reference Gene expression omnibus Platform Normal Tumor

Kabbout et al.[17] GSE43458 GPL6244 30 80

Landi et al.[18] GSE10072 GPL96 49 58

Yamauchi et al.[19] GSE31210 GPL570 20 226
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Table 2: Analysis of differentially expressed genes by gene expression omnibus 2R and FunRich software

Differentially 
expressed genes

Gene symbol

Downregulated ABCA3,ABCA8,ACADL,ADAMTS1,ADAMTSL3,ADARB1,ADGRG6,ADGRL2,ADGRL4,ADH1B,ADIRF,AGER,AGTR1, 
AGTR2,AHNAK,AKT3,ANGPT1,ANOS1,ANXA3,AOC3,AQP4,ARHGAP29,ARHGAP44,ARHGAP6,ARRB1,BCHE, 
C14orf132,C7,CA2,CA4,CACNA2D2,CALCRL,CAT,CAV1,CD34,CD36,CD93,CDH5,CDO1,CHRDL1,CLDN18,CLIC5, 
CPA3,CPB2,CRTAC1,CRYAB,CTNNAL1,CXCL2,CYP4B1,DACH1,DCN,DENND3,DES,DNAJB4,DOCK4,DPT,DUOX1, 
DUSP1,EDN1,EDNRB,EFEMP1,EMCN,EML1,EMP1,EMP2,EPB41L2,ERG,FABP4,FAM105A,FAM107A,FAM189A2, 
FBLN5,FCN3,FEZ1,FGFR2,FHL1,FHL5,FLI1,FLRT3,FMO2,FOSB,GHR,GIMAP6,GNG11,GPC3,GPM6A,GPM6B,GPRC5A, 
GRK5,HBB,HBEGF,HEG1,HEY1,HIGD1B,HLF,HOXA5,HSD17B6,HSPB8,ICAM2,ID1,ID4,IL1RL1,IL33,IL6,INPP5A,ITGA8, 
ITIH5,ITM2A,JAM2,KCNJ15,KIAA1462,KL,KLF4,KLF6,LAMP3,LDB2,LDLR,LHFP,LIMCH1,LMCD1,LMO7,LPL,LRRC32, 
LRRC36,LRRN3,LYVE1MARCO,MEIS1,METTL7A,MFAP4,MME,MMRN2,MRC1,MSR1,MT1M,MYH10,MYH11,MYL9, 
NEBL,NEDD4L,NPR1,NPR3,NRN1,OGN,OLFML1,OLR1,P2RY14,P3H2,PALMD,PCDH17,PCOLCE2,PDK4,PDZD2,

PECAM1,PGC,PHACTR2,PID1,PIP5K1B,PLA2G1B,PLLP,PTPRB,PTRF,RAB11FIP1,RAMP2,RAMP3,RBP4,RECK,RGCC, 
S1PR1,SASH1,SCEL,SCGB1A1,SDPR,SEMA5A,SEMA6A,SFTPC,SFTPD,SH3BP5,SLC1A1,SLC39A8,SLC6A4,SLCO2A1, 
SLIT2,SMAD6,SOCS2,SORBS1,SOSTDC1,SPOCK2,SPTBN1,SRPX,STARD13,STXBP6,SYNE1,TACC1,TBX3,TCF21,TEK, 
TGFBR2,TGFBR3,THBD,TIE1,TIMP3,TMEM100,TMEM204,TMEM47,TNNC1,TNS1,TPPP3,TSPAN7,VIPR1,VSIG4, 
VWF,WASF3,WIF1ZBTB16

Upregulated KIF4A,KIF11,MUC16,MXRA5,MUC5B,MMP1,MMP11,LCN2,MELK,LGSN,LGR4,MMP12,MMP7,MMP9,TCN1,SULF1, 
THBS2,TFAP2A,SPINK1,SPP1,STEAP1,TIMP1,TYMS,TTK,TNFRSF21,TMPRSS4,TMPRSS11E,TPX2,TOX3,TOP2A,PLAU, 
NQO1,PCP4,PBK,SLC2A1,SLC7A11,RRM2,SFN,S100P,CEP55,CENPF,CFB,CHI3L1,CDH3,CDK1,CEACAM5,CDKN3, 
CP,COMP,CRABP2,CST1,COL3A1,COL1A1,COL11A1,COL10A1,ASPM,ADAM28,ABCC3,AGR2,CCNB2,CD24,CDC20, 
CCNB1,BUB1B,BUB1,CXCL13,GREM1,GPR87,KIAA0101,KDELR3,KCNN4,HMGB3,IGF2BP3,EZH2,FAP,DLGAP5, 
CYP24A1,ECT2,DSP,GINS1,GDF15,GCNT3,GOLM1,GALNT7

Figure 1: The Venn analysis which shows the correlation between all three gene expression omnibus datasets. Venn diagram (a) shows the 
correlation of downregulated differentially expressed genes (DEGs) while Venn diagram (b) shows the correlation between upregulated DEGs

a

b
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activity, transmembrane receptor protein serine, transforming 
growth factor-beta activated receptor activity, and low-density 
lipoprotein particle binding. In addition, the analysis also showed 
that the upregulated DEGs were mainly enriched in serine-type 
peptidase activity, peptidase activity, metalloendopeptidase 
activity, histone kinase activity, and metallopeptidase activity.

The KEGG pathway for downregulated DEGs was mainly 
expressed for vascular smooth muscle contraction, AGE-RAGE 
signaling pathway in diabetic complication, PPAR signaling 
pathway, tight junction, and cell adhesion molecules. The 
upregulated DEGs significantly enriched in cell cycle, p53 
signaling pathway, oocyte meiosis, ECM-receptor interaction, 
and focal adhesion.

PPI Network Screening and Identification 
of Hub Gene

STRING database was used to construct the PPI network 
among the DEGs. Then, Cytoscape software was used to 
identify the hub gene. The protein interaction networks had 
a total of 298 nodes and 1177 edges that were involved in 
the network, as showed in Figure 2. Based on the connectivity 

degree in the PPI network, the top 10 genes were evaluated 
[Figure 3]. Thus, based on these results, interleukin 6 (IL6) 
had the highest-ranked in degree of connectivity which was 79, 
followed by matrix metallopeptidase 9 (MMP9, degree =51), 
secreted phosphoprotein 1 (SPP1, degree =37), histone-lysine 
N-methyltransferase enhancer of zeste homologue 2 (EZH2, 
degree =34), alpha-1 type 1 collagen (COL1A1, degree =33), 
platelet and endothelial cell adhesion molecule 1 (PECAM1, 
degree =32), cyclin-dependent kinase 1 (CDK1,degree =31), 
von Willebrand factor (VWF, degree =31), endothelin 1 (EDN1, 
degree =30), and transmembrane phosphoglycoprotein 
(CD34, degree =30). All these genes may play important roles 
in the development of lung adenocarcinoma.

The Hub Genes Survival Analysis

KM plot was constructed for each of the ten hub genes to identify 
their prognostic value. On the platform, there were 1926 LC 
patients involved in the overall survival analysis. From the KM 
plot, seven significant DEGs which were IL6, MMP9, SPP1, 
EZH2, COL1A1, CDK1, and CD34 were identified to be related 
to discouraging overall survival in LC patients. Furthermore, 

Figure 2: The search tool for the retrieval of interacting genes protein-protein interaction networks of 215 downregulated and 84 upregulated 
genes. The network had 298 nodes and 1177 edges. The lines represent the interaction of protein between the genes, the circles represent the 
genes, and the results within the circles show the protein structure. The network has significantly more interaction because the proteins have more 
interactions among themselves that what would be expected for a random set of proteins of similar size, drawn from genome. The enrichment 
indicates that the proteins are at least partially biologically connected, as a group
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three significant DEGs were identified to be associated with 
favorable overall survival in LC patients which were PECAM1, 
EDN1, and VWF.

DISCUSSION

In this study, 215 downregulated and 84 upregulated DEGs 
were identified between the normal tissue and the LC tissue. The 
results were obtained after screening three datasets from GEO 
database. Then, all DEGs were divided according to their GO 
functional activity such as CC, BP, and MF and KEGG pathway. 
The results showed that the LC patients’ DEGs involved in 
extracellular matrix organization, G-protein coupled receptor 
dimeric complex, and amyloid-beta binding. The analysis of 
KEGG pathway also showed that the DEGs were enriched in 
vascular smooth muscle contraction, PPAR signaling pathway, 
tight junction and cell adhesion molecules, p53 signaling 
pathway, oocyte meiosis, ECM-receptor interaction, and focal 
adhesion. Next, STRING database and Cytoscape were used to 
construct the PPI network and to screen 10 hub genes which 
are IL-6, MMP9, SPP1, EZH2, COL1A1, PECAM1, CDK1, 
VWF, EDN1, and CD34. Based on the results, five genes are 
upregulated (COL1A1, CDK1, EZH2, MMP9, and SPP1) and 
another five genes (CD34, EDN1, IL-6, PECAM1, and VWF) 
are downregulated in LC patients. Moreover, KM plotter was 
also used to identify the effect of the hub genes on the overall 
survival in LC patients.

IL-6 is a gene that encodes a cytokine which functions in 
the maturation and inflammation of β cells. This gene function 
is associated with various inflammation disease condition 
and it differentiates β cells into Ig secreting cells which 
participate in the differentiation of monocyte and lymphocyte. 

IL-6 is secreted by a wide variety of cells include the tumor 
cell. It is found to be elevated in tumor and serum tissue of 
cancers such as LC, breast cancer, colorectal cancer, prostate 
cancer, and cervical cancer.[20] According to a study by Silva 
and colleague,[21] IL-6 was identified to be related to gender, 
showing a higher level in male. Shang et al. reported that[22] 
IL-6 regulates the proliferation of LC. It is positively correlated 
with the distant metastasis and lymph node metastasis in 
NSCLC. Therefore, the result shows that IL-6 also could 
stimulate metastasis in LC. Based on the result in this study, 
patients with high-level expression of IL-6 have unfavorable 
value for overall survival in NSCLC.

In normal physiological processes, MMP9 involves in the 
breakdown of the extracellular matrix, including reproduction, 
embryonic development, and tissue remodeling. Most of MMP’s 
are inactive proproteins which will be activated when it is 
cleaved by extracellular proteinases. The gene that is encoded 
by this enzyme degrades Type IV and V collagens. MMP9 has 
been identified to relate to the pathology of cancers such as 
migration, angiogenesis, and metastasis. MMP9 can cause 
cancer to develop and progress and it is a significant target for 
several types of cancers such as NSCLC, giant cell tumor of bone, 
cervical cancer, ovarian cancer, and breast cancer.[23] MMP9 gene 
expression is present in the normal lung tissue, but the LC tissue 
had a significantly higher expression. This study result was in 
agreement with El-Badrawy et al.[24] who reported that MMP9 
may act as a potential biomarker in LC. It could also help in 
differentiating the types of LC. This is due to MMP9 has a higher 
level of expression in NSCLC compared to other types of LC.

The SPP1 encoded a protein and participated in the 
attachment of osteoclast with a mineralized bone matrix. The 

Figure 3: Top ten hub genes subnetwork from protein-protein network using Cytoscape software. The different color of nodes represents the 
degree of connectivity. The color shows the hub genes rank from 1 to 10. Yellow color represents the lowest degree, orange color shows the 
intermediate degree, and red color shows the highest degree among all the hub genes
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encoded protein binds tightly to hydroxyapatite. SPP1 gene 
also plays a role as a cytokine which involved in activating 
the production of IL-12 and interferon-gamma. It also reduces 
the production of IL-10. SPP1 also promotes tumor metastasis 
and growth. Recently, it has been reported that SPP1 promotes 
survival of cancer cell and control the tumor cell related to 
angiogenesis and inflammation pathway.[25] Moreover, SPP1 
has been previously shown that it activates the nuclear 
factor-kB (NF-kB) in NSCLC.[26]

EZH2 is an important member of polycomb repressive 
complex which is responsible for the repression of selected 
gene expression and histone methylation.[27] According to 
a study by Lopci and Rossi,[28] EZH2 also plays a key role in 
cancer progression and tumorigenesis. It is also the regulator of 
tumor angiogenesis. EZH2 was found overexpressed in several 
cancer, including gastric cancer, breast cancer, prostate cancer, 
colorectal cancer, and LC. A lot of studies have evaluated the 
EZH2 overexpression may be a prognostic factor for survival 
in LC patients.[29] In this research, EZH2 expression has been 
shown to have unfavorable value in the overall survival of LC. 
However, more studies need to be conducted to get a more 
conclusive result.

Chain COL1A1 is a member of Group 1 collagen. It 
encodes the pro-alpha1 chains of type 1 collagen. In NSCLC 
tumor, the expression level of COL1A1 messenger RNA was 
higher than in normal tissue. However, it is not associated 
with the metastasis stage of tumor node.[30] COL1A1 promoter 
showed hypermethylation in NSCLC.[31]

The PECAM1 belongs to the immunoglobulin superfamily 
which important in thrombosis and angiogenesis.[32] PECAM1 
also has been reported involved in cell-cell adhesion through 
heterophilic and homophilic interaction and transduces the 
intracellular signal. PECAM1 also plays an important role in 
leukocytes recruitment at inflammatory sites, development in 
cardiovascular, and the release of bone marrow leukocytes.[33] 
According to Kuang et al.,[32] PECAM1 could be a potential 
biomarker in LC. Notably, in this study, the KM plotter showed 
that overexpression of PECAM1 is a favorable prognostic factor 
for the overall survivor in LC patients.

CDK1 gene encodes a member of the Ser/Thr protein 
kinase family. The protein known as M-phase promoting 
factor is important for the transition of eukaryotic cell cycle. 
It acts as regulatory subunits. Moreover, CDK1 is important 
for the proliferation and progression of cell cycle and it could 
dysregulate the CDK1 activity. A study showed that CDK1 was 
an unfavorable prognostic biomarker for NSCLC.[34] The high 
level of expression indicates the patients with a high risk of 
recurrence cancer and poor survival. However, they are also 
a study associated with CDK1 which identifies that CDK1 
inhibition and deprivation of iron are one of the potential 
strategies to suppress LC.[35]

VWF is a multimeric glycoprotein that is important in 
primary hemostasis and allowing platelet adhesion to expose 
subendothelium. This role suggests the potential of cancer 
metastasis development. The tumor cells will interact with the 
vessel wall and platelet to extravasate from circulation. A study 
by Bauer et al.[36] reported that VWF in tumor vessels promote 
tumor which related to thromboembolism and metastasis. VWF 

will cause platelet aggregation and provoke the coagulation in 
cancer patients. In addition, VWF preferentially overexpressed 
in the tumor vasculature of LC compared to other neighboring 
tissue vasculature. According to a report about VWF,[37] high 
level of VWF expression was found in the LC patient tissue 
which in agreement with the results in this study. Moreover, 
VWF overexpression is favorable in the overall survival of LC 
patients.

EDN1, a member of the endothelin family, has highly 
potent vasoconstrictive peptides. Abnormal expression of this 
gene may cause tumorigenesis. A genotypic polymorphism 
study showed that EDN1 has a significant relationship with 
EDNRA genetic polymorphism and presents the severity of LC. 
The EDN1 gene also causes the development and progression 
of LC.[38] Moreover, EDN1 has been identified to initiate tumor 
growth by promoting angiogenesis. The overexpression of 
EDN1 was observed in several of tumor.[39] In this study, the 
results of KM plotter showed that overexpression of EDN1 is a 
favorable factor of overall survival in LC patients.

As discussed above, many previous studies have shown 
that all the hub genes are linked to LC. Thus, additional 
bioinformatics analysis and molecular biological experiments 
are needed to verify our findings.

CONCLUSION

We identified some important genes and systematically showed 
the pathways and BPs that closely related to LC development. 
The results gave more comprehensive clues to understand the 
pathogenesis of LC in patients and identify potential diagnostic 
biomarker. Notably, compared to other studies, analyzing the 
data on the hub genes yielded an almost consistent conclusion. 
The difference on the results was partly due to unequal sample 
sizes. Further study is needed to verify the findings and assess 
the hub genes effect.
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