The effect of glucose, adenosine-5’-triphosphate, and adenosine on glucose transporter 9 expression in MDCK cells
Abstract
Full Text:
1-7;PDFReferences
Augustin R., Carayannopoulos M. O., Dowd L. O., et al. Identification and characterization of human glucose transporter-like protein-9 (GLUT9). J Biol Chem 2004; 279: 16229-16236.
Doblado M.Moley K. H. Facilitative glucose transporter 9, a unique hexose and urate transporter. Am J Physiol 2009; 297: E831-E835.
Caulfield M. J., Munroe P. B., O’Neill D., et al. SLC2A9 is a high-capacity urate transporter in humans. PLoS Med 2008; 5: 1509-1523.
Anzai N., Ichida K., Jutabha P., et al. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J Biol Chem 2008; 283: 26834-26838.
Witkowska K., Smith K. M., Yao S. Y. M., et al. Human SLC2A9a and SLC2A9b isoforms mediate electrogenic transport of urate with different characteristics in the presence of hexoses. Am J Physiol 2012; 303: F527-F539.
Preitner F., Bonny O., Laverriere A., et al. Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy. PNAS 2009; 106: 15501-15506.
Gerich J. E. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet Med 2010; 27: 136-142.
Augustin R. The protein family of glucose transport facilitators: it's not only about glucose after all. IUBMB Life 2010; 62: 315-333.
Facchini F., Chen Y.-D. I., Hollenbeck C. B., et al. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. JAMA 1991; 266: 3008-3011.
Rao S. M.Sahayo B. J. A study of serum uric acid in diabetes mellitus and pre-diabetes in a south Indian tertiary care hospital. NUJHS 2012; 2: 18-23.
Kimura T., Amonpatumrat S., Tsukada A., et al. Increased expression of SLC2A9 decreases urate excretion from the kidney. Nucleosides Nucleotides Nucleic Acids 2011; 30: 1295-1301.
Bannasch D., Safra N., Young A., et al. Mutations in the SLC2A9 gene cause hyperuricosuria and hyperuricemia in the dog. PLoS Genet 2008; 4:
Windpessl M., Ritelli M., Wallner M., et al. A novel homozygous SLC2A9 mutation associated with renal-induced hypouricemia. Am J Nephrol 2016; 43: 245-250.
Keembiyehetty C., Augustin R., Carayannopoulos M. O., et al. Mouse glucose transporter 9 splice variants are expressed in adult liver and kidney and are up-regulated in diabetes. Mol Endocrinol 2006; 20: 686-697.
Doshi M., Takiue Y., Saito H., et al. The increased protein level of URAT1 was observed in obesity/metabolic syndrome model mice. Nucleosides Nucleotides Nucleic Acids 2011; 30: 1290-1294.
Carayannopoulos M. O., Schlein A., Wyman A., et al. GLUT9 is differentially expressed and targeted in the preimplantation embryo. Endocrinology 2004; 145: 1435-1443.
Bibee K. P., Illsley N. P.Moley K. H. Asymmetric syncytial expression of GLUT9 splice variants in human term placenta and alteration in diabetic pregnancies. Reprod Sci 2011; 18: 20-27.
Stanirowski P. J., Szukiewicz D., Pyzlak M., et al. Impact of pre-gestational and gestational diabetes mellitus on the expression of glucose transporters GLUT-1, GLUT-4 and GLUT-9 in human term placenta. Endocrine 2017; 55: 799-808.
Roa H., Gajardo C., Troncoso E., et al. Adenosine mediates transforming growth factor-beta 1 release in kidney glomeruli of diabetic rats. FEBS Lett 2009; 583: 3192-3198.
Solini A., Iacobini C., Ricci C., et al. Purinergic modulation of mesangial extracellular matrix production: role in diabetic and other glomerular diseases. Kidney Int 2005; 67: 875-885.
Chen K., Zhang J., Zhang W., et al. ATP-P2X4 signaling mediates NLRP3 inflammasome activation: a novel pathway of diabetic nephropathy. The International Journal of Biochemistry and Cell Biology 2013; 45: 932-943.
Karczewska J., Piwkowska A., Rogacka D., et al. Purinergic modulation of glucose uptake into cultured rat podocytes: effect of diabetic milieu. Biochem Biophys Res Commun 2011; 404: 723-727.
Burnstock G.Novak I. Purinergic signalling and diabetes. Purinergic Signal 2013; 9: 307-324.
Solini A., Usuelli V.Fiorina P. The dark side of extracellular ATP in kidney diseases. J Am Soc Nephrol 2015; 26: 1007-1016.
Antonioli L., Blandizzi C., Csoka B., et al. Adenosine signalling in diabetes mellitus-pathophysiology and therapeutic considerations. Nat Rev Endocrinol 2015;
Marks J., Carvou N. J. C., Debnam E. S., et al. Diabetes increases facilitative glucose uptake and GLUT2 expression at the rat proximal tubule brush border membrane. J Physiol 2003; 553.1: 137-145.
Rahmoune H., Thompson P. W., Ward J. M., et al. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes 2005; 54: 3427-3434.
Stoner G. D. Hyperosmolar hyperglycemic state. Am Fam Physician 2005; 71: 1723-1730.
Burnstock G., Evans L. C.Bailey M. A. Purinergic signalling in the kidney in health and disease. Purinergic Signal 2014; 10: 71-101.
Migita K., Lu L., Zhao Y., et al. Adenosine induces ATP release via an inositol 1,4,5-triphosphate signaling pathway in MDCK cells. Biochem Biophys Res Commun 2005; 328: 1211-1215.
Kempson S. A., Edwards J. M., Osborn A., et al. Acute inhibition of the betaine transporter by ATP and adenosine in renal MDCK cells. Am J Physiol Renal Physiol 2008; 295: F108-F117.
Lee Y. J., Park S. H.Han H. J. ATP stimulates Na+-glucose cotransporter activity via cAMP and p38 MAPK in renal proximal tubule cells. Am J Physiol Cell Physiol 2005; 289: C1268-C1276.
Kim M. S., Lee J., Ha J., et al. ATP stimulates glucose transport through activation of P2 purinergic receptors in C2C12 skeletal muscle cells. Archives of Biochemistry and Biophysics 2002; 404: 205-214.
Cura A. J.Carruthers A. Acute medulation of sugar transport in brain capillary endothelial cell cultures during activation of the metabolic stress pathway. J Biol Chem 2010; 285: 15430-15439.
Patinha D., Afonso J., Sousa T., et al. Activation of adenosine receptors improves renal antioxidant status in diabetic Wistar but not SHR rats. Ups J Med Sci 2014; 119: 10-18.
Bahn A., Johnstone R.Rodrigues E. GLUT9 facilitates the development of type 2 diabetes mellitus under hyperuricemic conditions. Proc Physiol Soc 2014; 31: 191P.
Rodrigues E., Johnstone R.Bahn A. Regulation of the major renal uric acid transporter GLUT9 by miRNAs. In: Oxygen Theme Meeting, University of Otago, New Zealand; 2012, p.10.
Cobb B. R.Clancy J. P. Molecular and cell biology of adenosine receptors. In: E. M. Schwiebert, editors. Current topic in membranes. Elsevier Science; 2003, p.151-181.
Verzijl D.IJzerman A. P. Function selectivity of adenosine receptor ligands. Purinergic Signal 2011; 7: 171-192.
Insel P. A.Ostrom R. S. Forskolin as a tool for examining adenylyl cyclase expression, regulation, and G protein signaling. Cell Mol Neurobiol 2003; 23: 305-314.
Cheng J. T., Chi T. C.Liu I. M. Activation of adenosine A1 receptors by drugs to lower plasma glucose in streptozotocin-induced diabetic rats. Auton Neurosci 2000; 83: 127-133.
Refbacks
- There are currently no refbacks.