QSAR study on quinolinecarbaldehyde derivatives as potential anti-tubercular agents
Abstract
Full Text:
72-81:PDFReferences
Vanheusden V, Lehmann M, Froeyen H, Dugue M, Lheyerick A, Keukeleire D, Pochet D. 3’-C-branchedchain-substituted nucleosides and nucleotides as potent inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase. J. Med. Chem. 46: 3811-3821(2003).
Wang JY, Hsueh PR, Jan IS, Lee LN, Liaw YS, Yang PC, Luh KT. Empirical treatment with a fluoroquinolone delays the treatment for tuberculosis and is associated with a poor prognosis in endemic areas. Thorax, 61: 903-908 (2010).
Breen RAM, Miller RF, Gorsuch T. Virological response to highly active antiretroviral therapy is unaffected by antituberculosis therapy. J. Infect. Dis. 193: 1437-1440 (2006).
Bang D, Andersen AB, Thomsen VO. Rapid genotypic detection of rifampin- and isoniazid-resistant Mycobacterium tuberculosis directly in clinical specimens. J. Clin. Microbiol. 44: 2605-2608 (2006).
Aktas E, Durmaz R, Yang D, Yang Z. Molecular characterization of isoniazid and rifampin resistance of Mycobacterium tuberculosis clinical isolates from Malatya, Turkey. Microb. Drug Resist. 11: 94-99 (2005).
Cole ST, Brosch R, Parkhill J. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 393: 537-544 (1998).
Nayyar A, Jain R. Recent advances in new structural classes of anti-tuberculosis agents. Curr. Med. Chem. 12: 1873-1880 (2005).
Gupta RA, Gupta AK, Kaskhedikar SG. Prediction of anti-mycobacterial activity of 2-(4-(4,5-dihydro-1H-pyrazol-3-yl)phenoxy)acetic acid analogs: A QSAR approach. Acta Chim. Slov. 56: 977–984 (2009).
Gupta RA, Gupta AK, Soni LK, Gopalrao KS. 2-(pyrazin-2-yloxy)acetohydrazide analogs QSAR Study: An insight into the structural basis of antimycobacterial activity. Chem. Biol. Drug Des. 76: 441-450 (2010).
Gupta RA, Gupta AK, Soni LK, Kaskhedikar SG. Study of physicochemical properties-antitubercular activity relationship of naphthalene-1,4-dione analogs: A QSAR approach. Chem. Pap. 63: 723-730 (2009).
Jha KK, Samad A, Kumar Y, Shahryar M, Khosa RL, Jain J, Bansal S. 3D QSAR Studies of 1,3,4-oxadiazole derivatives as antimycobacterial agents. Iranian J. Pharm. Res. 8:163-167 (2009).
Judge V, Narasimhan B, Ahuja M, Sriram D, Yogeeswari P, Clercq ED, Pannecouque C, Balzarini J. Isonicotinic acid hydrazide derivatives: synthesis, antimicrobial activity, and QSARs. Med. Chem. Res. 21: 1451-1470 (2012).
Manvar A, Malde A, Verma J, Virsodia V, Mishra A, Upadhyay K, Acharya H, Coutinho E, Shah A. Synthesis, anti-tubercular activity and 3D-QSAR study of coumarin-4-acetic acid benzylidene hydrazides. Eur. J. Med. Chem. 43: 2395-2403 (2008).
Masand VH, Jawarkar RD, Mahajan DT, Hadda TB, Sheikh J, Patil KN. QSAR and CoMFA studies of biphenyl analogs of the anti-tuberculosis drug (6S)-2-nitro-6-{[4-(trifluoromethoxy) benzyl] oxy}-6, 7-dihydro-5H-imidazo [2, 1-b][1, 3] oxazine (PA-824). Med. Chem. Res. 21: 2624-2629 (2012).
Narang R, Narasimhan B, Sharma S, Sriram D, Yogeeswari P, Clercq ED, Pannecouque C, Balzarini J. Nicotinic acid benzylidene/phenyl-ethylidene hydrazides: synthesis, antimicrobial evaluation and QSAR studies. Lett. Drug Des. Dis. 8: 733-749 (2011).
Shahlaei M, Fassihi A, Nezam A. QSAR study of some 5-methyl/trifluoromethoxy- 1H-indole-2,3-dione-3-thiosemicarbazone derivatives as anti-tubercular agents. Res. Pharma. Sci. 4: 123-131(2009).
Sharma R, Panigrahi D, Mishra GP. QSAR studies of 7-methyl juglone derivatives as antitubercular agents. Med. Chem. Res. 21: 2006-2011 (2012).
Singh S, Mandal PK, Singh N, Misra AK, Singh S, Chaturvedi V, Sinha S, Saxena AK. Substituted hydrazine carbothioamide as potent antitubercular agents: synthesis and quantitative structure-activity relationship (QSAR). Bioorg. Med. Chem. Lett. 20: 2597-2600 (2010).
Virsdoia V, Shaikh MS, Manvar A, Desai B, Parecha A, Loriya R, Dholariya K, Patel G, Vora V, Upadhyay K, Denish K, Shah A, Coutinho EC. Screening for in vitro anti-mycobacterial activity and three-dimensional quantitative structure–activity relationship (3D-QSAR) study of 4-(arylamino)coumarin derivatives. Chem. Biol. Drug Des. 76: 412-424 (2010).
Gramatica P, Chirico N, Papa E, Cassani S, Kovarich S. QSARINS: A new software for the development, analysis, and validation of QSAR MLR models. J Comp. Chem. Software news and updates, 34: 2121-2132 (2013).
Nayyar A, Malde A, Coutinho E, Jain R. Synthesis, anti-tuberculosis activity, and 3D-QSAR study of ring-substituted-2/4-quinolinecarbaldehyde derivatives. Bioorg. Med. Chem. 14: 7302–7310 (2006).
Tropsha A, Gramatica P, Gombar VK. The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb. Sci. 22: 1-9 (2003).
Roy PP, Paul S, Modra I, Roy K. On two novel parameters for validation of predictive QSAR models. Molecules, 14: 1660-1701 (2009).
Chirico N, Gramatica P. Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J. Chem. Inf. Model. 51: 2320-2335 (2011).
Vighi M, Gramatica P, Consolaro F, Todeschini R. QSAR and chemometric approaches for setting water quality objectives for dangerous chemicals. Ecotoxicol. Environ. Safety, 49: 206-220 (2001).
Maggiora GJ. On outliers and activity cliffss - Why QSAR often disappoints. Chem. Inf. Model. 46: 1535-1537 (2006).
Refbacks
- There are currently no refbacks.