Quantitative structure–activity relationship modeling of S-triazines and 2-arylpyrimidines as selective PDE4B inhibitors

Anand Gaurav, Gabriel Akyirem Akowuah, Choo Shiuan Por

Abstract


A QSAR analysis was conducted on a series of 2-arylpyrimidine and s-triazine derivatives as selective PDE4B inhibitors. Primary objective of the study is to develop predictive QSAR models for s-triazines and 2-arylpyrimidines as selective PDE4B and to identify structural features which can be introduced to increase the PDE4B selectivity. A data set comprising of 62 compounds as PDE4B inhibitors was used for development of first QSAR model while data set of 57 compounds as PDE4D inhibitors was used to develop another QSAR model. Data set was divided into training (80%) and test (20%) set by using K-mean clustering method. CDK and chemaxon descriptors were obtained for all compounds. QSAR model was built using multiple linear regression (MLR) technique. Squared cross-validation leave one out (LOO) coefficient (R2cv) for internal validation was calculated whereas external validation was performed by predicting the activity of test set using QSAR model developed. The results suggest that ATSm4, Wlambda3.unity, C1SP1, RNCS, TPSA, asa_ASA_P_pH_7.4 and maximalprojectionradius are important in determining the PDE4B inhibition, while BCUT-1l, WNSA-3, nAtomP, TPSA and C1SP3 are vital structural features in determining the PDE4D inhibition. TPSA and C1SP3 are negatively correlated with the PDE4D inhibition.


Full Text:

69-83;PDF

References


Durham, A. L.; Caramori, G.; Chung, K. F.; Adcock, I. M., Targeted anti-inflammatory therapeutics in asthma and chronic obstructive lung disease. Transl. Res.

Pelaia, G.; Muzzio, C. C.; Vatrella, A.; Maselli, R.; Magnoni, M. S.; Rizzi, A., Pharmacological basis and scientific rationale underlying the targeted use of inhaled corticosteroid/long-acting β2-adrenergic agonist combinations in chronic obstructive pulmonary disease treatment. Exp. Opin. Pharmacother 2015, 16 (13), 2009-2021.

Garvey, C., Recent updates in chronic obstructive pulmonary disease. Postgrad. Med. J 2015.

Montuschi, P., Pharmacological treatment of chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2006, 1 (4), 409-423.

Ito, K.; Ito, M.; Elliott, W. M.; Cosio, B.; Caramori, G.; Kon, O. M.; Barczyk, A.; Hayashi, S.; Adcock, I. M.; Hogg, J. C.; Barnes, P. J., Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med 2005, 352 (19), 1967-76.

John A. Marwick, G. C., Paolo Casolari, Federico Mazzoni, Paul A. Kirkham, Ian M. Adcock, Kian Fan Chung and Alberto Papi, A role for phosphoinositol 3–kinase d in the impairment of glucocorticoid responsiveness in patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2010, 125 (1), 1146-1153.

Ito K, I. M., Elliott WM, et al, Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med 2005, 352 (19), 1967-1976.

Press, N. J.; Banner, K. H., PDE4 inhibitors - a review of the current field. Prog Med Chem 2009, 47, 37-74.

Burgin, A. B.; Magnusson, O. T.; Singh, J.; Witte, P.; Staker, B. L.; Bjornsson, J. M.; Thorsteinsdottir, M.; Hrafnsdottir, S.; Hagen, T.; Kiselyov, A. S.; Stewart, L. J.; Gurney, M. E., Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety. Nat Biotechnol 2010, 28 (1), 63-70.

Spina, D., PDE4 inhibitors: current status. Br J Pharmacol 2008, 155 (3), 308-15.

Barnette, M. S., Phosphodiesterase 4 (PDE4) inhibitors in asthma and chronic obstructive pulmonary disease (COPD). Prog Drug Res 1999, 53, 193-229.

Diamant, Z.; Spina, D., PDE4-inhibitors: a novel, targeted therapy for obstructive airways disease. Pulm Pharmacol Ther 2011, 24 (4), 353-60.

Torphy, T. J., Phosphodiesterase Isozymes Molecular Targets for Novel Antiasthma Agents. Am. J. Respir. Crit. Care Med. 1998, 157 (2), 351-370.

Garnock-Jones, K., Roflumilast: A Review in COPD. Drugs 2015, 75 (14), 1645-1656.

Beghe, B.; Rabe, K. F.; Fabbri, L. M., Phosphodiesterase-4 inhibitor therapy for lung diseases. Am J Respir Crit Care Med 2013, 188 (3), 271-8.

Perez-Torres, S.; Miro, X.; Palacios, J. M.; Cortes, R.; Puigdomenech, P.; Mengod, G., Phosphodiesterase type 4 isozymes expression in human brain examined by in situ hybridization histochemistry and[3H]rolipram binding autoradiography. Comparison with monkey and rat brain. J Chem Neuroanat 2000, 20 (3-4), 349-74.

Lamontagne, S.; Meadows, E.; Luk, P.; Normandin, D.; Muise, E.; Boulet, L.; Pon, D. J.; Robichaud, A.; Robertson, G. S.; Metters, K. M.; Nantel, F., Localization of phosphodiesterase-4 isoforms in the medulla and nodose ganglion of the squirrel monkey. Brain Res 2001, 920 (1-2), 84-96.

Robichaud, A.; Stamatiou, P. B.; Jin, S. L.; Lachance, N.; MacDonald, D.; Laliberte, F.; Liu, S.; Huang, Z.; Conti, M.; Chan, C. C., Deletion of phosphodiesterase 4D in mice shortens alpha(2)-adrenoceptor-mediated anesthesia, a behavioral correlate of emesis. J Clin Invest 2002, 110 (7), 1045-52.

Naganuma, K.; Omura, A.; Maekawara, N.; Saitoh, M.; Ohkawa, N.; Kubota, T.; Nagumo, H.; Kodama, T.; Takemura, M.; Ohtsuka, Y.; Nakamura, J.; Tsujita, R.; Kawasaki, K.; Yokoi, H.; Kawanishi, M., Discovery of selective PDE4B inhibitors. Bioorg. Med. Chem. Lett. 2009, 19 (12), 3174-3176.

Jin, S. L.; Goya, S.; Nakae, S.; Wang, D.; Bruss, M.; Hou, C.; Umetsu, D.; Conti, M., Phosphodiesterase 4B is essential for T(H)2-cell function and development of airway hyperresponsiveness in allergic asthma. J Allergy Clin Immunol 2010, 126 (6), 1252-9 e12.

Hagen, T. J.; Mo, X.; Burgin, A. B.; Fox 3rd, D.; Zhang, Z.; Gurney, M. E., Discovery of triazines as selective PDE4B versus PDE4D inhibitors. Bioorg. Med. Chem. Lett. 2014, 24 (16), 4031-4034.

Kolb, P.; Phan, K.; Gao, Z. G.; Marko, A. C.; Sali, A.; Jacobson, K. A., Limits of ligand selectivity from docking to models: in silico screening for A(1) adenosine receptor antagonists. PLoS One 2012, 7 (11), e49910.

Wang, Z.; Li, Y.; Ai, C.; Wang, Y., In silico prediction of estrogen receptor subtype binding affinity and selectivity using statistical methods and molecular docking with 2-arylnaphthalenes and 2-arylquinolines. Int J Mol Sci 2010, 11 (9), 3434-58.

Gieldon, A.; Kazmierkiewicz, R.; Slusarz, R.; Pasenkiewicz-Gierula, M.; Ciarkowski, J., Molecular dynamics study of 4-OH-phenylacetyl- D-Y(Me)FQNRPR-NH2 selectivity to V1a receptor. J Mol Model 2003, 9 (6), 372-8.

Zeng, J.; Li, W.; Zhao, Y.; Liu, G.; Tang, Y.; Jiang, H., Insights into Ligand Selectivity in Estrogen Receptor Isoforms: Molecular Dynamics Simulations and Binding Free Energy Calculations. J. Phys. Chem. B 2008, 112 (9), 2719-2726.

ACD/ChemSketch 2016.1, Advanced Chemistry Development, Inc.: Toronto, Canada, 2016.

Sushko, I.; Novotarskyi, S.; Korner, R.; Pandey, A. K.; Rupp, M.; Teetz, W.; Brandmaier, S.; Abdelaziz, A.; Prokopenko, V. V.; Tanchuk, V. Y.; Todeschini, R.; Varnek, A.; Marcou, G.; Ertl, P.; Potemkin, V.; Grishina, M.; Gasteiger, J.; Schwab, C.; Baskin, II; Palyulin, V. A.; Radchenko, E. V.; Welsh, W. J.; Kholodovych, V.; Chekmarev, D.; Cherkasov, A.; Aires-de-Sousa, J.; Zhang, Q. Y.; Bender, A.; Nigsch, F.; Patiny, L.; Williams, A.; Tkachenko, V.; Tetko, I. V., Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information. Journal of computer-aided molecular design 2011, 25 (6), 533-54.

Novotarskyi, S. Molecule preprocessing. (accessed 23 August).

Andersson, C. D.; Hillgren, J. M.; Lindgren, C.; Qian, W.; Akfur, C.; Berg, L.; Ekstrom, F.; Linusson, A., Benefits of statistical molecular design, covariance analysis, and reference models in QSAR: a case study on acetylcholinesterase. J Comput Aided Mol Des 2015, 29 (3), 199-215.

STATISTICA (data analysis software system), 10; StatSoft, Inc.: 2011.

Ravichandran Veerasamy, H. R., Abhishek Jain, Shalini Sivadasan, Christapher P. Varghese and Ram Kishore Agrawal, Validation of QSAR Models - Strategies and Importance. Int J Drug Discov 2011, 2 (3), 511-519.

Tropsha, A., Best Practices for QSAR Model Development, Validation, and Exploitation. WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, 2010; Vol. 29.

Roberto Todeschini, V. C., Handbook of Molecular Descriptors. Wiley-VCH: 2008; Vol. 11, p 688

R. Todeschini, p. G., R. Provenzani, E. Marengo Weighted holistic invariant molecular descriptors. Part 2. Theory development and applications on modeling physicochemical properties of polyaromatic hydrocarbons Chemometr. Intell. Lab. 1995, 27, 227-229.

Roberto Todeschini, M. L., Emilio Marengo, New molecular descriptors for 2D and 3D structures. Theory. J. Chemometrics 1994, 8 (4), 263-272.

Prasanna, S.; Doerksen, R. J., Topological polar surface area: a useful descriptor in 2D-QSAR. Curr. Med. Chem 2009, 16 (1), 21-41.

Strazielle, N.; Ghersi-Egea, J. F., Factors affecting delivery of antiviral drugs to the brain. J. Med. Virol 2005, 15 (2), 105-33.

Li, S.; He, H.; Parthiban, L. J.; Yin, H.; Serajuddin, A. T., IV-IVC considerations in the development of immediate-release oral dosage form. J. Pharm. Sci. 2005, 94 (7), 1396-417.

Mason, J. S.; Beno, B. R., Library design using BCUT chemistry-space descriptors and multiple four-point pharmacophore fingerprints: simultaneous optimization and structure-based diversity. Journal of molecular graphics & modelling 2000, 18 (4-5), 438-51, 538.

Roberto Todeschini, V. C., Molecular Descriptors for Chemoinformatics. John Wiley & Sons: 2009; Vol. 41.

Singh, J.; Shaik, B.; Singh, S.; Agrawal, V. K.; Khadikar, P. V.; Deeb, O.; Supuran, C. T., Comparative QSAR study on para-substituted aromatic sulphonamides as CAII inhibitors: information versus topological (distance-based and connectivity) indices. Chemical biology & drug design 2008, 71 (3), 244-59.


Refbacks

  • There are currently no refbacks.