Short native α-helical cationic antimicrobial peptides: promising alternative antibiotics
Abstract
resulted in reduced effectiveness of available conventional antimicrobial drugs and becomes
a major concern for public health worldwide. Antimicrobial peptides (AMPs) are regarded as
excellent candidates of promising alternative antibiotics owing to their higher or equal
potencies and broad spectrum antimicrobial activities with less possibility of resistance
induction when compared to conventional antibiotic drugs. Among AMPs, short native α-
helical cationic antimicrobial peptides have been illustrated as potential antibiotic candidates
because they contain small and simple structure providing the advantages for chemical
modifications and structure-activity relationship studies. Interestingly, the small and simple
structures are attractive and demonstrate as commercially feasible candidates for further
development in therapeutic or industrial uses. Therefore, this review focused on current
discovered short native α-helical cationic antimicrobial peptides ( <10 amino acid residues in
length) which are anoplin, temporin-H, and temporin-SHf. This review also summarized
these peptides in aspect of physico-chemical properties, activities and toxicities.
Full Text:
1-9:PDFReferences
A. J. Alanis. Resistance to antibiotics: are we in the post-antibiotic era?. Arch Med Res.
: 697-705 (2005).
W. C. Wimley and K. Hristova. Antimicrobial peptides: successes, challenges and
unanswered questions. J Membr Biol. 239: 27-34 (2011).
M. Zasloff. Antimicrobial peptides of multicellular organisms. Nature. 415: 389-95
(2002).
P. Nicolas. Multifunctional host defense peptides: intracellular-targeting antimicrobial
peptides. FEBS J. 276: 6483-96 (2009).
H. G. .Boman. Peptide antibiotics and their role in innate immunity. Annu Rev
Immunol.13: 61-92 (1995).
S. Rotem, I. Radzishevsky, and A. Mor. Physicochemical properties that enhance
discriminative antibacterial activity of short dermaseptin derivatives. Antimicrob.
Agents Chemother. 50: 2666-2672 (2006).
R. E. Hancock and H. G. Sahl. Antimicrobial and host-defense peptides as new anti-
infective therapeutic strategies. Nat. Biotechnol. 24: 1551-1557 (2006).
R. M. Epand and H. J. Vogel. Diversity of antimicrobial peptides and their mechanisms of
action. Biochim Biophys Acta. 1462: 11-28 (1999).
K. A. Brogden. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?
Nat Rev Microbiol. 3: 238-250 (2005)
G. Wang, X. Li, and Z. Wang. APD2: the updated antimicrobial peptide database and its
application in peptide design. Nucleic Acids Res. 37: D933-D937 (2009).
K. A. Henzler Wildman, D. K. Lee, and A. Ramamoorthy. Mechanism of lipid bilayer
disruption by the human antimicrobial peptide, LL-37. Biochemistry. 42: 6545–6558
(2003).
Y. Pouny, D. Rapaport, A. Mor, P. Nicolas, and Y. Shai. Interaction of antimicrobial
dermaseptin and its fluorescentlylabeled analogues with phospholipid membranes.
Biochemistry. 31: 12416–12423 (1992).
L. Yang, T. A. Harroun, T. M. Weiss, L. Ding, and H. W. Huang. Barrel-stave model or
toroidal model? A case study on melittin pores. Biophys. J. 81: 1475–1485 (2001).
C. Subbalakshmi, and N. Sitaram. Mechanism of antimicrobial action of indolicidin.
FEMS Microbiol. Lett. 160: 91–96 (1998).
H. Brotz, G. Bierbaum, K. Leopold, P. E. Reynolds, and H. G. Sahl. The lantibiotic
mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob. Agents
Chemother. 42: 154–160 (1998).
C. B. Park, H. S. Kim, and S. C. Kim. Mechanism of action of the antimicrobial peptide
buforin II: buforin II kills microorganisms by penetrating the cell membrane and
inhibiting cellular functions. Biochem. Biophys. Res. Commun. 244: 253–257 (1998).
A. Patrzykat, C. L. Friedrich, L. Zhang, V. Mendoza, and R. E. Hancock. Sublethal
concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular
synthesis in Escherichia coli. Antimicrob. Agents Chemother. 46: 605–614 (2002).
D. Andreu and L. Rivas. Animal antimicrobial peptides: an overview. Biopolymers. 47:
–433 (1998).
G. F. Ames. Lipids of Salmonella typhimurium and Escherichia coli: Structure and
Metabolism. J Bacteriol. 95: 833–843 (1968).
J. A. Virtanen, K. H. Cheng, and P. Somerharju. Phospholipid composition of the
mammalian red cell membrane can be rationalized by a superlattice model. Proc Natl
Acad Sci U S A. 95: 4964-4969 (1998).
R. Gautier, D. Douguet, B. Antonny, and G. Drin. HELIQUEST: a web server to screen
sequences with specific alpha-helical properties. Bioinformatics. 24: 2101-2102 (2008)
D. Marion, M. Zasloff, and A. Bax. A two-dimensional NMR study of the antimicrobial
peptide magainin 2. FEBS Lett. 227: 21-26 (1988).
W. van 't Hof, E. C. Veerman, E. J. Helmerhorst, and A. V. Amerongen. Antimicrobial
peptides: properties and applicability. Biol Chem. 382: 597-619 (2001).
K. Konno, M. Hisada, R. Fontana, C. C. B. Lorenzi, H. Naoki,Y. Itagaki Y, A. Miwa, N.
Kawai, Y. Nakata, T. Yasuhara, J. Ruggiero Neto, W. F. Jr de Azevedo, M. S. Palma,
and T. Nakajima. Anoplin, a novel antimicrobial peptide from the venom of the solitary
wasp Anoplius samariensis. Biochim Biophys Acta. 1550: 70-80 (2001).
M. P. Dos Santos Cabrera, M. Arcisio-Miranda, S. T. Broggio Costa, K. Konno, J. R.
Ruggiero, J. Procopio, and J. Ruggiero Neto. Study of the mechanism of action of
anoplin, a helical antimicrobial decapeptide with ion channel-like activity, and the role
of the amidated C-terminus. J Pept Sci. 14: 661-669 (2008)
D. Ifrah, X. Doisy, T. S. Ryge, and P. R. Hansen. Structure-activity relationship study of
anoplin. J Pept Sci 11: 113-121 (2005).
J. K. Munk, L. E. Uggerhøj, T. J. Poulsen, N. Frimodt-Møller, R. Wimmer, N. T.
Nyberg, and P. R. Hansen. Synthetic analogs of anoplin show improved antimicrobial
activities. Pept Sci. 19: 669-675 (2013).
B. Jindřichová, L. Burketová, and Z. Novotná. Novel properties of antimicrobial peptide
anoplin. Biochem Biophys Res Commun. 444: 520-524 (2014).
A. Won, S. Pripotnev, A. Ruscito, and A. Ianoul. Effect of point mutations on the
secondary structure and membrane interaction of antimicrobial peptide anoplin. J Phys
Chem B. 115: 2371-2379 (2011).
M. Simmaco, G. Mignogna, S. Canofeni, R. Miele, M. L. Mangoni, and D. Barra.
Temporins, antimicrobial peptides from the European red frog Rana temporaria. Eur. J.
Biochem. 242: 788–792 (1996).
M. L. Mangoni. Temporins, anti-infective peptides with expanding properties. Cell Mol
Life Sci. 63: 1060-1069 (2006).
M. L. Mangoni, A. C. Rinaldi, A. Di Giulio, G. Mignogna, A. Bozzi, D. Barra D, and M.
Simmaco. Structure-function relationships of temporins, small antimicrobial peptides
from amphibian skin. Eur J Biochem. 267: 1447-1454 (2000).
D. Wade, J. Silberring, R. Soliymani, S. Heikkinen, I. Kilpelainen, H. Lankinen, and P.
Kuusela. Antibacterial activities of temporin A analogs. FEBS Lett. 479: 6–9 (2000).
A. Giacometti, O. Cirioni, W. Kamysz, G. D’Amato, C. Silvestri, M. S. Del Prete, A.
Licci, J. Lukasiak, and G. Scalise. In vitro activity and killing effect of temporin A on
nosocomial isolates of Enterococcus faecalis and interactions with clinically used
antibiotics. J. Antimicrob. Chemother. 55: 272–274 (2005).
F. Abbassi, C. Galanth, M. Amiche, K. Saito, C. Piesse, L. Zargarian, K. Hani, P.
Nicolas, O. Lequin, and A. Ladram. Solution structure and model membrane
interactions of temporins-SH, antimicrobial peptides from amphibian skin. A NMR
spectroscopy and differential scanning calorimetry study. Biochemistry. 47: 10513-
(2008).
F. Abbassi, O. Lequin, C. Piesse, N. Goasdoue, T. Foulon, P. Nicolas P, and A. Ladram.
Temporin-SHf, a new type of phe-rich and hydrophobic ultrashort antimicrobial
peptide. J Biol Chem. 285:16880-16892 (2010).
Refbacks
- There are currently no refbacks.