Short native α-helical cationic antimicrobial peptides: promising alternative antibiotics

Jiraphun Jittikoon

Abstract


An emergence increasing evidence of antibiotic resistance in microorganisms has

resulted in reduced effectiveness of available conventional antimicrobial drugs and becomes

a major concern for public health worldwide.  Antimicrobial peptides (AMPs) are regarded as

excellent candidates of promising alternative antibiotics owing to their higher or equal

potencies and broad spectrum antimicrobial activities with less possibility of resistance

induction when compared to conventional antibiotic drugs.  Among AMPs, short native α-

helical cationic antimicrobial peptides have been illustrated as potential antibiotic candidates

because they contain small and simple structure providing the advantages for chemical

modifications and structure-activity relationship studies.  Interestingly, the small and simple

structures are attractive and demonstrate as commercially feasible candidates for further

development in therapeutic or industrial uses.  Therefore, this review focused on current

discovered short native α-helical cationic antimicrobial peptides ( <10 amino acid residues in

length) which are anoplin, temporin-H, and temporin-SHf.  This review also summarized

these peptides in aspect of physico-chemical properties, activities and toxicities.

Full Text:

1-9:PDF

References


A. J. Alanis. Resistance to antibiotics: are we in the post-antibiotic era?. Arch Med Res.

: 697-705 (2005).

W. C. Wimley and K. Hristova. Antimicrobial peptides: successes, challenges and

unanswered questions. J Membr Biol. 239: 27-34 (2011).

M. Zasloff. Antimicrobial peptides of multicellular organisms. Nature. 415: 389-95

(2002).

P. Nicolas. Multifunctional host defense peptides: intracellular-targeting antimicrobial

peptides. FEBS J. 276: 6483-96 (2009).

H. G. .Boman. Peptide antibiotics and their role in innate immunity. Annu Rev

Immunol.13: 61-92 (1995).

S. Rotem, I. Radzishevsky, and A. Mor. Physicochemical properties that enhance

discriminative antibacterial activity of short dermaseptin derivatives. Antimicrob.

Agents Chemother. 50: 2666-2672 (2006).

R. E. Hancock and H. G. Sahl. Antimicrobial and host-defense peptides as new anti-

infective therapeutic strategies. Nat. Biotechnol. 24: 1551-1557 (2006).

R. M. Epand and H. J. Vogel. Diversity of antimicrobial peptides and their mechanisms of

action. Biochim Biophys Acta. 1462: 11-28 (1999).

K. A. Brogden. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?

Nat Rev Microbiol. 3: 238-250 (2005)

G. Wang, X. Li, and Z. Wang. APD2: the updated antimicrobial peptide database and its

application in peptide design. Nucleic Acids Res. 37: D933-D937 (2009).

K. A. Henzler Wildman, D. K. Lee, and A. Ramamoorthy. Mechanism of lipid bilayer

disruption by the human antimicrobial peptide, LL-37. Biochemistry. 42: 6545–6558

(2003).

Y. Pouny, D. Rapaport, A. Mor, P. Nicolas, and Y. Shai. Interaction of antimicrobial

dermaseptin and its fluorescentlylabeled analogues with phospholipid membranes.

Biochemistry. 31: 12416–12423 (1992).

L. Yang, T. A. Harroun, T. M. Weiss, L. Ding, and H. W. Huang. Barrel-stave model or

toroidal model? A case study on melittin pores. Biophys. J. 81: 1475–1485 (2001).

C. Subbalakshmi, and N. Sitaram. Mechanism of antimicrobial action of indolicidin.

FEMS Microbiol. Lett. 160: 91–96 (1998).

H. Brotz, G. Bierbaum, K. Leopold, P. E. Reynolds, and H. G. Sahl. The lantibiotic

mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob. Agents

Chemother. 42: 154–160 (1998).

C. B. Park, H. S. Kim, and S. C. Kim. Mechanism of action of the antimicrobial peptide

buforin II: buforin II kills microorganisms by penetrating the cell membrane and

inhibiting cellular functions. Biochem. Biophys. Res. Commun. 244: 253–257 (1998).

A. Patrzykat, C. L. Friedrich, L. Zhang, V. Mendoza, and R. E. Hancock. Sublethal

concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular

synthesis in Escherichia coli. Antimicrob. Agents Chemother. 46: 605–614 (2002).

D. Andreu and L. Rivas. Animal antimicrobial peptides: an overview. Biopolymers. 47:

–433 (1998).

G. F. Ames. Lipids of Salmonella typhimurium and Escherichia coli: Structure and

Metabolism. J Bacteriol. 95: 833–843 (1968).

J. A. Virtanen, K. H. Cheng, and P. Somerharju. Phospholipid composition of the

mammalian red cell membrane can be rationalized by a superlattice model. Proc Natl

Acad Sci U S A. 95: 4964-4969 (1998).

R. Gautier, D. Douguet, B. Antonny, and G. Drin. HELIQUEST: a web server to screen

sequences with specific alpha-helical properties. Bioinformatics. 24: 2101-2102 (2008)

D. Marion, M. Zasloff, and A. Bax. A two-dimensional NMR study of the antimicrobial

peptide magainin 2. FEBS Lett. 227: 21-26 (1988).

W. van 't Hof, E. C. Veerman, E. J. Helmerhorst, and A. V. Amerongen. Antimicrobial

peptides: properties and applicability. Biol Chem. 382: 597-619 (2001).

K. Konno, M. Hisada, R. Fontana, C. C. B. Lorenzi, H. Naoki,Y. Itagaki Y, A. Miwa, N.

Kawai, Y. Nakata, T. Yasuhara, J. Ruggiero Neto, W. F. Jr de Azevedo, M. S. Palma,

and T. Nakajima. Anoplin, a novel antimicrobial peptide from the venom of the solitary

wasp Anoplius samariensis. Biochim Biophys Acta. 1550: 70-80 (2001).

M. P. Dos Santos Cabrera, M. Arcisio-Miranda, S. T. Broggio Costa, K. Konno, J. R.

Ruggiero, J. Procopio, and J. Ruggiero Neto. Study of the mechanism of action of

anoplin, a helical antimicrobial decapeptide with ion channel-like activity, and the role

of the amidated C-terminus. J Pept Sci. 14: 661-669 (2008)

D. Ifrah, X. Doisy, T. S. Ryge, and P. R. Hansen. Structure-activity relationship study of

anoplin. J Pept Sci 11: 113-121 (2005).

J. K. Munk, L. E. Uggerhøj, T. J. Poulsen, N. Frimodt-Møller, R. Wimmer, N. T.

Nyberg, and P. R. Hansen. Synthetic analogs of anoplin show improved antimicrobial

activities. Pept Sci. 19: 669-675 (2013).

B. Jindřichová, L. Burketová, and Z. Novotná. Novel properties of antimicrobial peptide

anoplin. Biochem Biophys Res Commun. 444: 520-524 (2014).

A. Won, S. Pripotnev, A. Ruscito, and A. Ianoul. Effect of point mutations on the

secondary structure and membrane interaction of antimicrobial peptide anoplin. J Phys

Chem B. 115: 2371-2379 (2011).

M. Simmaco, G. Mignogna, S. Canofeni, R. Miele, M. L. Mangoni, and D. Barra.

Temporins, antimicrobial peptides from the European red frog Rana temporaria. Eur. J.

Biochem. 242: 788–792 (1996).

M. L. Mangoni. Temporins, anti-infective peptides with expanding properties. Cell Mol

Life Sci. 63: 1060-1069 (2006).

M. L. Mangoni, A. C. Rinaldi, A. Di Giulio, G. Mignogna, A. Bozzi, D. Barra D, and M.

Simmaco. Structure-function relationships of temporins, small antimicrobial peptides

from amphibian skin. Eur J Biochem. 267: 1447-1454 (2000).

D. Wade, J. Silberring, R. Soliymani, S. Heikkinen, I. Kilpelainen, H. Lankinen, and P.

Kuusela. Antibacterial activities of temporin A analogs. FEBS Lett. 479: 6–9 (2000).

A. Giacometti, O. Cirioni, W. Kamysz, G. D’Amato, C. Silvestri, M. S. Del Prete, A.

Licci, J. Lukasiak, and G. Scalise. In vitro activity and killing effect of temporin A on

nosocomial isolates of Enterococcus faecalis and interactions with clinically used

antibiotics. J. Antimicrob. Chemother. 55: 272–274 (2005).

F. Abbassi, C. Galanth, M. Amiche, K. Saito, C. Piesse, L. Zargarian, K. Hani, P.

Nicolas, O. Lequin, and A. Ladram. Solution structure and model membrane

interactions of temporins-SH, antimicrobial peptides from amphibian skin. A NMR

spectroscopy and differential scanning calorimetry study. Biochemistry. 47: 10513-

(2008).

F. Abbassi, O. Lequin, C. Piesse, N. Goasdoue, T. Foulon, P. Nicolas P, and A. Ladram.

Temporin-SHf, a new type of phe-rich and hydrophobic ultrashort antimicrobial

peptide. J Biol Chem. 285:16880-16892 (2010).


Refbacks

  • There are currently no refbacks.